Suppr超能文献

用于太阳能转换的金属氧化物光阳极中的表面氧物种

Surface Oxygen Species in Metal Oxide Photoanodes for Solar Energy Conversion.

作者信息

Ouyang Jie, Lu Qi-Chao, Shen Sheng, Yin Shuang-Feng

机构信息

State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

出版信息

Nanomaterials (Basel). 2023 Jun 23;13(13):1919. doi: 10.3390/nano13131919.

Abstract

Converting and storing solar energy directly as chemical energy through photoelectrochemical devices are promising strategies to replace fossil fuels. Metal oxides are commonly used as photoanode materials, but they still encounter challenges such as limited light absorption, inefficient charge separation, sluggish surface reactions, and insufficient stability. The regulation of surface oxygen species on metal oxide photoanodes has emerged as a critical strategy to modulate molecular and charge dynamics at the reaction interface. However, the precise role of surface oxygen species in metal oxide photoanodes remains ambiguous. The review focuses on elucidating the formation and regulation mechanisms of various surface oxygen species in metal oxides, their advantages and disadvantages in photoelectrochemical reactions, and the characterization methods employed to investigate them. Additionally, the article discusses emerging opportunities and potential hurdles in the regulation of surface oxygen species. By shedding light on the significance of surface oxygen species, this review aims to advance our understanding of their impact on metal oxide photoanodes, paving the way for the design of more efficient and stable photoelectrochemical devices.

摘要

通过光电化学装置将太阳能直接转化并存储为化学能是替代化石燃料的有前景的策略。金属氧化物通常用作光阳极材料,但它们仍面临诸如光吸收有限、电荷分离效率低、表面反应迟缓以及稳定性不足等挑战。对金属氧化物光阳极表面氧物种的调控已成为调节反应界面处分子和电荷动力学的关键策略。然而,表面氧物种在金属氧化物光阳极中的精确作用仍不明确。这篇综述着重阐明金属氧化物中各种表面氧物种的形成和调控机制、它们在光电化学反应中的优缺点以及用于研究它们的表征方法。此外,本文还讨论了表面氧物种调控方面新出现的机遇和潜在障碍。通过阐明表面氧物种的重要性,本综述旨在增进我们对其对金属氧化物光阳极影响的理解,为设计更高效、稳定的光电化学装置铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32c/10343587/4ebe82f910a0/nanomaterials-13-01919-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验