Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
Molecules. 2023 Jun 28;28(13):5077. doi: 10.3390/molecules28135077.
In this work, a novel bio-based high-performance bisbenzoxazine resin was synthesized from daidzein, 2-thiophenemethylamine and paraformaldehyde. The chemical structure was confirmed using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FT-IR). The polymerization process was systematically studied using differential scanning calorimetry (DSC) and in situ FT-IR spectra. It can be polymerized through multiple polymerization behaviors under the synergistic reaction of thiophene rings with benzopyrone rather than a single polymerization mechanism of traditional benzoxazines, as reported. In addition, thermogravimetric analysis (TGA) and a microscale combustion calorimeter (MCC) were used to study the thermal stability and flame retardancy of the resulting polybenzoxazine. The thermosetting material showed a high carbon residue rate of 62.8% and a low heat release capacity (HRC) value of 33 J/gK without adding any flame retardants. Based on its outstanding capability of carbon formation, this newly obtained benzoxazine resin was carbonized and activated to obtain a porous carbon material doped with both sulfur and nitrogen. The CO absorption of the carbon material at 0 °C and 25 °C at 1 bar was 3.64 mmol/g and 3.26 mmol/g, respectively. The above excellent comprehensive properties prove its potential applications in many advanced fields.
在这项工作中,从大豆苷元、2-噻吩甲胺和多聚甲醛合成了一种新型的基于生物的高性能双苯并恶嗪树脂。采用核磁共振波谱(NMR)和傅里叶变换红外光谱(FT-IR)确认了其化学结构。采用差示扫描量热法(DSC)和原位 FT-IR 谱系统研究了聚合过程。它可以通过噻吩环与苯并吡喃的协同反应而不是传统苯并恶嗪的单一聚合机制进行聚合,这与已有报道不同。此外,还使用热重分析(TGA)和微尺度燃烧量热计(MCC)研究了所得聚苯并恶嗪的热稳定性和阻燃性。该热固性材料在不添加任何阻燃剂的情况下,表现出 62.8%的高残炭率和 33 J/gK 的低热释放容量(HRC)值。基于其出色的成碳能力,这种新获得的苯并恶嗪树脂被碳化和激活,得到了一种掺杂硫和氮的多孔碳材料。该碳材料在 0°C 和 25°C 下、1 巴时的 CO 吸收量分别为 3.64 mmol/g 和 3.26 mmol/g。上述优异的综合性能证明了其在许多先进领域的潜在应用。