Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China.
Qingdao Second Health School of Shandong Province, Qingdao 266308, China.
Molecules. 2023 Jun 30;28(13):5135. doi: 10.3390/molecules28135135.
In this work, two-dimensional (2D) Zn-HMT (Zn(NO)(HMT)(HO)]) nanosheets were synthesized using a facile one-step chemical precipitation in the presence of Zn(NO), hexamine (HMT), and anhydrous ethanol at room temperature. Subsequently, hexagonal T-ZnO (T-ZnO refers to the zinc oxide (ZnO) nanoparticles) were synthesized by a high-temperature solid-phase method at different temperatures ( = 500, 550, 600, 650, 700, 750, and 800 °C) nanoparticles with different morphologies were synthesized by a high-temperature calcination approach using 2D Zn-HMT nanosheets as precursor. The crystal structure, morphology, specific surface areas, surface and interface properties, optical properties, and charge migration behaviors of the as-synthesized T-ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), automatic specific surface and aperture analyzer, X-ray photoelectron spectroscopy (XPS), UV-visible spectrophotometer, photoluminescence (PL) spectra, and electrochemical impedance spectroscopy (EIS). The photocatalytic performances and stabilities of the as-synthesized typical T-ZnO nanoparticles with various morphologies were evaluated and compared with the commercial ZnO (CM-ZnO) nanoparticle. The T700-ZnO nanoparticle with spherical and irregular morphology exhibited the highest photocatalytic activity (99.12%) for the degradation of Rhodamine B (RhB), compared to T500-ZnO (92.32%), T600-ZnO (90.65%), T800-ZnO (44.04%), and the CM-ZnO (88.38%) nanoparticle, which can be attributed to the cooperative effects of higher crystallinity, bigger crystal size, the strongest separation efficiency, the lowest recombination rate, the fastest charge carrier transfer path, and the highest charge-transfer efficiency. The superior photocatalytic activity illustrated by the T700-ZnO nanoparticle makes it have potential application prospects for the treatment of organic wastewater.
在这项工作中,我们使用一种简便的一步化学沉淀法,在室温下,以 Zn(NO)、六亚甲基四胺 (HMT) 和无水乙醇为原料,合成了二维 (2D) Zn-HMT (Zn(NO)(HMT)(HO)]) 纳米片。随后,通过高温固相法在不同温度下(=500、550、600、650、700、750 和 800°C)合成了六方 T-ZnO(T-ZnO 是指氧化锌 (ZnO) 纳米粒子),使用 2D Zn-HMT 纳米片作为前驱体,通过高温煅烧方法合成了具有不同形貌的纳米粒子。通过粉末 X 射线衍射 (XRD)、场发射扫描电子显微镜 (FESEM)、透射电子显微镜 (TEM)、高分辨率 TEM (HRTEM)、自动比表面积和孔径分析仪、X 射线光电子能谱 (XPS)、紫外可见分光光度计、光致发光 (PL) 光谱和电化学阻抗谱 (EIS) 对所合成的 T-ZnO 纳米粒子的晶体结构、形貌、比表面积、表面和界面性质、光学性质和电荷迁移行为进行了表征。评估并比较了具有不同形貌的典型 T-ZnO 纳米粒子的光催化性能和稳定性,与商业 ZnO(CM-ZnO)纳米粒子进行了比较。与 T500-ZnO(92.32%)、T600-ZnO(90.65%)、T800-ZnO(44.04%)和 CM-ZnO(88.38%)纳米粒子相比,具有球形和不规则形貌的 T700-ZnO 纳米粒子对 Rhodamine B(RhB)的降解具有最高的光催化活性(99.12%),这归因于更高的结晶度、更大的晶粒尺寸、最强的分离效率、最低的复合率、最快的电荷载流子转移路径和最高的电荷转移效率之间的协同作用。T700-ZnO 纳米粒子表现出的优异光催化活性使其在处理有机废水方面具有潜在的应用前景。