Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Gyeongsang National University, Jinju, 52828, Republic of Korea.
Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Gyeongsang National University, Jinju, 52828, Republic of Korea.
Chemosphere. 2021 Jul;274:129782. doi: 10.1016/j.chemosphere.2021.129782. Epub 2021 Jan 24.
Solar light-active silver nanoparticle (Ag NP) and nonmetal nitrogen (N)-codoped zinc oxide (ZnO:N/Ag) nanocomposites were fabricated by a pulsed laser-assisted method. N was considered as a promising candidate for tailoring the bandgap of ZnO due to the similar atomic radius as well as lower ionization energy and electronegativity compared to oxygen, which resulted in the formation of a shallow acceptor level in ZnO. Moreover, Ag NPs could enhance the optical properties of the ZnO materials as a consequence of the surface plasmon resonance (SPR) effect. The synthesized ZnO:N/Ag composite materials were characterized by X-ray diffraction (XRD), micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. The photocatalytic activity of the ZnO:N/Ag materials was evaluated for the efficient degradation of Rhodamine B (Rh.B) under solar light irradiation. The optimized ZnO:N/Ag-2 nanocomposite exhibited six times higher Rh·B degradation rate than pure ZnO. This was attributed to the enhanced absorption behavior in the solar region as well as the formation of the Schottky junction between ZnO:N and Ag NPs, which resulted in effective charge separation. In addition, the scavenger study revealed that O radicals facilitated the degradation of Rh.B. The reusability test of the ZnO:N/Ag nanocomposite confirmed high photostability and efficiency of the material in each successive cycle. The present investigation illustrates a rational design of metal and nonmetal-codoped ZnO nanostructures employing a pulsed laser-assisted technique for effective application in photocatalytic remediation of wastewater.
采用脉冲激光辅助法制备了太阳光活性银纳米粒子(Ag NP)和非金属氮(N)共掺杂氧化锌(ZnO:N/Ag)纳米复合材料。由于与氧相比,氮的原子半径相似,电离能和电负性较低,因此被认为是一种很有前途的调整 ZnO 能带隙的候选材料,这导致在 ZnO 中形成浅受主能级。此外,Ag NPs 可以增强 ZnO 材料的光学性能,这是由于表面等离子体共振(SPR)效应。所合成的 ZnO:N/Ag 复合材料通过 X 射线衍射(XRD)、微拉曼光谱、X 射线光电子能谱(XPS)、场发射扫描电子显微镜(FE-SEM)、高分辨率透射电子显微镜(HR-TEM)、能谱(EDS)、紫外可见漫反射光谱(UV-DRS)和光致发光(PL)分析进行了表征。在太阳光照射下,评估了 ZnO:N/Ag 材料对 Rhodamine B(Rh·B)的高效降解的光催化活性。优化后的 ZnO:N/Ag-2 纳米复合材料的 Rh·B 降解速率比纯 ZnO 高六倍。这归因于在太阳光区增强的吸收行为以及 ZnO:N 和 Ag NPs 之间形成的肖特基结,这导致了有效的电荷分离。此外,清除剂研究表明 O 自由基促进了 Rh·B 的降解。ZnO:N/Ag 纳米复合材料的可重复使用性测试证实了该材料在每个连续循环中的高光稳定性和效率。本研究通过脉冲激光辅助技术合理设计了金属和非金属共掺杂 ZnO 纳米结构,为废水的光催化修复有效应用提供了参考。