Suppr超能文献

基于 MALDI-MSI 的法庭科学研究方法的统计建模研究。

Statistical Modelling Investigation of MALDI-MSI-Based Approaches for Document Examination.

机构信息

Bioinformatics Research Center, Aarhus University, Universitetsbyen 81, 3. Building 1872, DK-8000 Aarhus, Denmark.

Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK.

出版信息

Molecules. 2023 Jul 4;28(13):5207. doi: 10.3390/molecules28135207.

Abstract

Questioned document examination aims to assess if a document of interest has been forged. Spectroscopy-based methods are the gold standard for this type of evaluation. In the past 15 years, Matrix-Assisted Laser Desorption Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has emerged as a powerful analytical tool for the examination of finger marks, blood, and hair. Therefore, this study intended to explore the possibility of expanding the forensic versatility of this technique through its application to questioned documents. Specifically, a combination of MALDI-MSI and chemometric approaches was investigated for the differentiation of seven gel pens, through their ink composition, over 44 days to assess: the ability of MALDI MSI to detect and image ink chemical composition and the robustness of the combined approach for the classification of different pens over time. The training data were modelled using elastic net logistic regression to obtain probabilities for each pen class and assess the time effect on the ink. This strategy led the classification model to yield predictions matching the ground truth. This model was validated using signatures generated by different pens (blind to the analyst), yielding a 100% accuracy in machine learning cross-validation. These data indicate that the coupling of MALDI-MSI with machine learning was robust for ink discrimination within the dataset and conditions investigated, which justifies further studies, including that of confounders such as paper brands and environmental factors.

摘要

questioned document examination aims to assess if a document of interest has been forged. Spectroscopy-based methods are the gold standard for this type of evaluation. In the past 15 years, Matrix-Assisted Laser Desorption Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has emerged as a powerful analytical tool for the examination of finger marks, blood, and hair. Therefore, this study intended to explore the possibility of expanding the forensic versatility of this technique through its application to questioned documents. Specifically, a combination of MALDI-MSI and chemometric approaches was investigated for the differentiation of seven gel pens, through their ink composition, over 44 days to assess: the ability of MALDI MSI to detect and image ink chemical composition and the robustness of the combined approach for the classification of different pens over time. The training data were modelled using elastic net logistic regression to obtain probabilities for each pen class and assess the time effect on the ink. This strategy led the classification model to yield predictions matching the ground truth. This model was validated using signatures generated by different pens (blind to the analyst), yielding a 100% accuracy in machine learning cross-validation. These data indicate that the coupling of MALDI-MSI with machine learning was robust for ink discrimination within the dataset and conditions investigated, which justifies further studies, including that of confounders such as paper brands and environmental factors.

questioned document examination aims to assess if a document of interest has been forged. Spectroscopy-based methods are the gold standard for this type of evaluation. In the past 15 years, Matrix-Assisted Laser Desorption Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has emerged as a powerful analytical tool for the examination of finger marks, blood, and hair. Therefore, this study intended to explore the possibility of expanding the forensic versatility of this technique through its application to questioned documents. Specifically, a combination of MALDI-MSI and chemometric approaches was investigated for the differentiation of seven gel pens, through their ink composition, over 44 days to assess: the ability of MALDI MSI to detect and image ink chemical composition and the robustness of the combined approach for the classification of different pens over time. The training data were modelled using elastic net logistic regression to obtain probabilities for each pen class and assess the time effect on the ink. This strategy led the classification model to yield predictions matching the ground truth. This model was validated using signatures generated by different pens (blind to the analyst), yielding a 100% accuracy in machine learning cross-validation. These data indicate that the coupling of MALDI-MSI with machine learning was robust for ink discrimination within the dataset and conditions investigated, which justifies further studies, including that of confounders such as paper brands and environmental factors.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95d9/10343405/ad8e5ce9256a/molecules-28-05207-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验