Suppr超能文献

大规模代谢组学:使用 10,133 项常规非靶向 LC-MS 测量值预测生物年龄。

Large-Scale metabolomics: Predicting biological age using 10,133 routine untargeted LC-MS measurements.

机构信息

Bioinformatics Research Center, Aarhus University, Aarhus, Denmark.

Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.

出版信息

Aging Cell. 2023 May;22(5):e13813. doi: 10.1111/acel.13813. Epub 2023 Mar 19.

Abstract

Untargeted metabolomics is the study of all detectable small molecules, and in geroscience, metabolomics has shown great potential to describe the biological age-a complex trait impacted by many factors. Unfortunately, the sample sizes are often insufficient to achieve sufficient power and minimize potential biases caused by, for example, demographic factors. In this study, we present the analysis of biological age in ~10,000 toxicologic routine blood measurements. The untargeted screening samples obtained from ultra-high pressure liquid chromatography-quadruple time of flight mass spectrometry (UHPLC- QTOF) cover + 300 batches and + 30 months, lack pooled quality controls, lack controlled sample collection, and has previously only been used in small-scale studies. To overcome experimental effects, we developed and tested a custom neural network model and compared it with existing prediction methods. Overall, the neural network was able to predict the chronological age with an rmse of 5.88 years (r  = 0.63) improving upon the 6.15 years achieved by existing normalization methods. We used the feature importance algorithm, Shapley Additive exPlanations (SHAP), to identify compounds related to the biological age. Most importantly, the model returned known aging markers such as kynurenine, indole-3-aldehyde, and acylcarnitines along with a potential novel aging marker, cyclo (leu-pro). Our results validate the association of tryptophan and acylcarnitine metabolism to aging in a highly uncontrolled large-s cale sample. Also, we have shown that by using robust computational methods it is possible to deploy large LC-MS datasets for metabolomics studies to reduce the risk of bias and empower aging studies.

摘要

非靶向代谢组学是研究所有可检测的小分子,在老年科学中,代谢组学在描述生物年龄方面显示出巨大的潜力,生物年龄是一个复杂的特征,受到许多因素的影响。不幸的是,样本量通常不足以获得足够的效力,并最小化由于例如人口统计学因素引起的潜在偏差。在这项研究中,我们对大约 10000 个毒理学常规血液测量值中的生物年龄进行了分析。非靶向筛选样本来自超高压液相色谱-四极杆飞行时间质谱(UHPLC-QTOF),涵盖了+300 批和+30 个月的数据,缺乏混合的质量控制,缺乏受控的样本采集,并且以前仅在小规模研究中使用过。为了克服实验效应,我们开发并测试了一个定制的神经网络模型,并将其与现有预测方法进行了比较。总的来说,神经网络能够以 5.88 年的 RMSE(r=0.63)预测年龄,优于现有归一化方法达到的 6.15 年。我们使用特征重要性算法,Shapley Additive exPlanations(SHAP),来识别与生物年龄相关的化合物。最重要的是,该模型返回了已知的衰老标志物,如犬尿氨酸、吲哚-3-醛和酰基肉碱,以及一个潜在的新型衰老标志物,环(亮氨酸-脯氨酸)。我们的结果验证了在一个高度不受控制的大规模样本中,色氨酸和酰基肉碱代谢与衰老之间的关联。此外,我们还表明,通过使用稳健的计算方法,可以部署大型 LC-MS 数据集进行代谢组学研究,以降低偏倚风险并为衰老研究提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae70/10186604/4f8e31e38de3/ACEL-22-e13813-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验