Suppr超能文献

用于无人机航空影像的轻量级目标检测算法。

Lightweight Object Detection Algorithm for UAV Aerial Imagery.

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China.

Yunnan Key Lab of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650504, China.

出版信息

Sensors (Basel). 2023 Jun 21;23(13):5786. doi: 10.3390/s23135786.

Abstract

Addressing the challenges of low detection precision and excessive parameter volume presented by the high resolution, significant scale variations, and complex backgrounds in UAV aerial imagery, this paper introduces MFP-YOLO, a lightweight detection algorithm based on YOLOv5s. Initially, a multipath inverse residual module is designed, and an attention mechanism is incorporated to manage the issues associated with significant scale variations and abundant interference from complex backgrounds. Then, parallel deconvolutional spatial pyramid pooling is employed to extract scale-specific information, enhancing multi-scale target detection. Furthermore, the Focal- loss function is utilized to augment the model's focus on high-quality samples, consequently improving training stability and detection accuracy. Finally, a lightweight decoupled head replaces the original model's detection head, accelerating network convergence speed and enhancing detection precision. Experimental results demonstrate that MFP-YOLO improved the mAP50 on the VisDrone 2019 validation and test sets by 12.9% and 8.0%, respectively, compared to the original YOLOv5s. At the same time, the model's parameter volume and weight size were reduced by 79.2% and 73.7%, respectively, indicating that MFP-YOLO outperforms other mainstream algorithms in UAV aerial imagery detection tasks.

摘要

针对无人机航拍图像中高分辨率、显著尺度变化和复杂背景带来的低检测精度和参数量过大的挑战,本文引入了基于 YOLOv5s 的轻量级检测算法 MFP-YOLO。首先,设计了多路径逆残差模块,并引入注意力机制来处理显著尺度变化和复杂背景丰富干扰带来的问题。然后,采用并行卷积空间金字塔池化来提取特定尺度的信息,增强多尺度目标检测。此外,使用焦点损失函数增强模型对高质量样本的关注,从而提高训练稳定性和检测精度。最后,用轻量化的解耦头替换原始模型的检测头,加快网络收敛速度,提高检测精度。实验结果表明,与原始的 YOLOv5s 相比,MFP-YOLO 分别将 VisDrone 2019 验证集和测试集上的 mAP50 提高了 12.9%和 8.0%。同时,模型的参数量和权重大小分别减少了 79.2%和 73.7%,表明 MFP-YOLO 在无人机航拍图像检测任务中优于其他主流算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34a9/10346989/46401ec2ca2d/sensors-23-05786-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验