Suppr超能文献

基于 SSA-优化的自注意力 BiLSTM 网络和变点检测算法的风力涡轮机状态监测。

Wind Turbine Condition Monitoring Using the SSA-Optimized Self-Attention BiLSTM Network and Changepoint Detection Algorithm.

机构信息

School of New Energy, North China Electric Power University, Beijing 102206, China.

出版信息

Sensors (Basel). 2023 Jun 25;23(13):5873. doi: 10.3390/s23135873.

Abstract

Condition-monitoring and anomaly-detection methods used for the assessment of wind turbines are key to reducing operation and maintenance (O&M) cost and improving their reliability. In this study, based on the sparrow search algorithm (SSA), bidirectional long short-term memory networks with a self-attention mechanism (SABiLSTM), and a binary segmentation changepoint detection algorithm (BinSegCPD), a condition-monitoring method (SSA-SABiLSTM-BinSegCPD, SSD) used for wind turbines is proposed. Specifically, the self-attention mechanism, which can mine the nonlinear dynamic characteristics and spatial-temporal features inherent in the SCADA time series, was introduced into a two-layer BiLSTM network to establish a normal-behavior model for wind turbine key components. Then, as a result of the advantages of searching precision and convergence rate methods, the sparrow search algorithm was employed to optimize the constructed SABiLSTM model. Moreover, the BinSegCPD algorithm was applied to the predicted residual sequence to achieve the automatic identification of deterioration conditions for wind turbines. Case studies conducted on multiple wind turbines located in south China showed that the established SSA-SABiLSTM model was superior to other contrast models, achieving a better prediction precision in terms of RMSE, MAE, MAPE, and R. The MAE, RMSE, and MAPE of SSA-SABiLSTM were 0.2543 °C, 0.3412 °C, and 0.0069, which were 47.23%, 42.19%, and 53.38% lower than those of SABiLSTM, respectively. The R of SABiLSTM was 0.9731, which was 4.6% higher than that of SABiLSTM. The proposed SSD method can detect deterioration conditions 47-120 h in advance and trigger fault alarm signals approximately 36 h ahead of the actual failure time.

摘要

用于评估风力涡轮机的状态监测和异常检测方法是降低运行和维护(O&M)成本并提高其可靠性的关键。在本研究中,基于麻雀搜索算法(SSA)、具有自注意力机制的双向长短期记忆网络(SABiLSTM)和二进制分段变点检测算法(BinSegCPD),提出了一种用于风力涡轮机的状态监测方法(SSA-SABiLSTM-BinSegCPD,SSD)。具体来说,将能够挖掘 SCADA 时间序列中固有非线性动态特性和时空特征的自注意力机制引入到两层 BiLSTM 网络中,为风力涡轮机关键部件建立正常行为模型。然后,由于搜索精度和收敛速度方法的优势,采用麻雀搜索算法优化构建的 SABiLSTM 模型。此外,将 BinSegCPD 算法应用于预测残差序列,实现风力涡轮机劣化状态的自动识别。在中国南方多个风力涡轮机上进行的案例研究表明,所建立的 SSA-SABiLSTM 模型优于其他对比模型,在 RMSE、MAE、MAPE 和 R 方面具有更好的预测精度。SSA-SABiLSTM 的 MAE、RMSE 和 MAPE 分别为 0.2543°C、0.3412°C 和 0.0069,分别比 SABiLSTM 低 47.23%、42.19%和 53.38%。SABiLSTM 的 R 为 0.9731,比 SABiLSTM 高 4.6%。所提出的 SSD 方法可以提前 47-120 小时检测到劣化状态,并在实际故障时间前约 36 小时触发故障报警信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8772/10346352/6d054d6c3eee/sensors-23-05873-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验