Suppr超能文献

基于可解释人工智能技术的风力涡轮机组状态监测

Condition Monitoring of Wind Turbine Systems by Explainable Artificial Intelligence Techniques.

机构信息

Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy.

Department of Engineering, University of Sannio, Piazza Roma 21, 82100 Benevento, Italy.

出版信息

Sensors (Basel). 2023 Jun 6;23(12):5376. doi: 10.3390/s23125376.

Abstract

The performance evaluation of wind turbines operating in real-world environments typically relies on analyzing the power curve, which shows the relationship between wind speed and power output. However, conventional univariate models that consider only wind speed as an input variable often fail to fully explain the observed performance of wind turbines, as power output depends on multiple variables, including working parameters and ambient conditions. To overcome this limitation, the use of multivariate power curves that consider multiple input variables needs to be explored. Therefore, this study advocates for the application of explainable artificial intelligence (XAI) methods in constructing data-driven power curve models that incorporate multiple input variables for condition monitoring purposes. The proposed workflow aims to establish a reproducible method for identifying the most appropriate input variables from a more comprehensive set than is usually considered in the literature. Initially, a sequential feature selection approach is employed to minimize the root-mean-square error between measurements and model estimates. Subsequently, Shapley coefficients are computed for the selected input variables to estimate their contribution towards explaining the average error. Two real-world data sets, representing wind turbines with different technologies, are discussed to illustrate the application of the proposed method. The experimental results of this study validate the effectiveness of the proposed methodology in detecting hidden anomalies. The methodology successfully identifies a new set of highly explanatory variables linked to the mechanical or electrical control of the rotor and blade pitch, which have not been previously explored in the literature. These findings highlight the novel insights provided by the methodology in uncovering crucial variables that significantly contribute to anomaly detection.

摘要

在实际环境中运行的风力涡轮机的性能评估通常依赖于分析功率曲线,该曲线显示了风速与功率输出之间的关系。然而,传统的仅考虑风速作为输入变量的单变量模型往往无法充分解释风力涡轮机的实际性能,因为功率输出取决于多个变量,包括工作参数和环境条件。为了克服这一限制,需要探索考虑多个输入变量的多元功率曲线。因此,本研究主张在构建用于状态监测的多变量数据驱动功率曲线模型时应用可解释的人工智能(XAI)方法,该模型考虑了多个输入变量。提出的工作流程旨在建立一种可重现的方法,用于从比文献中通常考虑的更全面的集合中确定最合适的输入变量。最初,采用顺序特征选择方法来最小化测量值和模型估计值之间的均方根误差。随后,为所选输入变量计算 Shapley 系数,以估计它们对解释平均误差的贡献。讨论了两个具有不同技术的实际风力涡轮机数据集,以说明所提出方法的应用。该研究的实验结果验证了所提出方法在检测隐藏异常方面的有效性。该方法成功地识别了一组与转子和叶片桨距的机械或电气控制相关的新的高度解释变量,这些变量在文献中尚未得到探讨。这些发现突出了该方法在揭示对异常检测有重大贡献的关键变量方面提供的新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cd8/10301512/78286ce9d8e1/sensors-23-05376-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验