School of Computing, Gachon University, Seongnam-si 1332, Gyeonggi-do, Republic of Korea.
Sensors (Basel). 2023 Jun 25;23(13):5898. doi: 10.3390/s23135898.
This study proposes a method for detecting and tracking traversable regions in off-road conditions for unmanned ground vehicles (UGVs). Off-road conditions, such as rough terrain or fields, present significant challenges for UGV navigation, and detecting and tracking traversable regions is essential to ensure safe and efficient operation. Using a 3D laser scanner and range-image-based approach, a method is proposed for detecting traversable regions under off-road conditions; this is followed by a Bayesian fusion algorithm for tracking the traversable regions in consecutive frames. Our range-image-based traversable-region-detection approach enables efficient processing of point cloud data from a 3D laser scanner, allowing the identification of traversable areas that are safe for the unmanned ground vehicle to drive on. The effectiveness of the proposed method was demonstrated using real-world data collected during UGV operations on rough terrain, highlighting its potential as a solution for improving UGV navigation capabilities in challenging environments.
本研究提出了一种用于检测和跟踪无人驾驶地面车辆(UGV)在越野条件下可行驶区域的方法。越野条件,如崎岖地形或田野,对 UGV 导航提出了重大挑战,检测和跟踪可行驶区域对于确保安全和高效运行至关重要。本研究使用 3D 激光扫描仪和基于距离图像的方法,提出了一种在越野条件下检测可行驶区域的方法;然后是一种贝叶斯融合算法,用于在连续帧中跟踪可行驶区域。我们基于距离图像的可行驶区域检测方法能够有效地处理来自 3D 激光扫描仪的点云数据,从而能够识别出无人驾驶地面车辆可以安全行驶的可行驶区域。使用在崎岖地形上进行 UGV 操作时收集的真实世界数据验证了所提出方法的有效性,突出了其在改善 UGV 在挑战性环境中的导航能力方面的潜在应用。