Suppr超能文献

自动驾驶车辆越野行驶的实时路径规划。

Real-time path planning for autonomous vehicle off-road driving.

作者信息

Ramirez-Robles Ethery, Starostenko Oleg, Alarcon-Aquino Vicente

机构信息

Department of Computing, Electronics, and Mechatronics, Universidad de las Américas-Puebla, Puebla, Mexico.

出版信息

PeerJ Comput Sci. 2024 Jul 24;10:e2209. doi: 10.7717/peerj-cs.2209. eCollection 2024.

Abstract

BACKGROUND

Autonomous driving is a growing research area that brings benefits in science, economy, and society. Although there are several studies in this area, currently there is no a fully autonomous vehicle, particularly, for off-road navigation. Autonomous vehicle (AV) navigation is a complex process based on application of multiple technologies and algorithms for data acquisition, management and understanding. Particularly, a self-driving assistance system supports key functionalities such as sensing and terrain perception, real time vehicle mapping and localization, path prediction and actuation, communication and safety measures, among others.

METHODS

In this work, an original approach for vehicle autonomous driving in off-road environments that combines semantic segmentation of video frames and subsequent real-time route planning is proposed. To check the relevance of the proposal, a modular framework for assistive driving in off-road scenarios oriented to resource-constrained devices has been designed. In the scene perception module, a deep neural network is used to segment Red-Green-Blue (RGB) images obtained from camera. The second traversability module fuses Light Detection And Ranging (LiDAR) point clouds with the results of segmentation to create a binary occupancy grid map to provide scene understanding during autonomous navigation. Finally, the last module, based on the Rapidly-exploring Random Tree (RRT) algorithm, predicts a path. The Freiburg Forest Dataset (FFD) and RELLIS-3D dataset were used to assess the performance of the proposed approach. The theoretical contributions of this article consist of the original approach for image semantic segmentation fitted to off-road driving scenarios, as well as adapting the shortest route searching A* and RRT algorithms to AV path planning.

RESULTS

The reported results are very promising and show several advantages compared to previously reported solutions. The segmentation precision achieves 85.9% for FFD and 79.5% for RELLIS-3D including the most frequent semantic classes. While compared to other approaches, the proposed approach is faster regarding computational time for path planning.

摘要

背景

自动驾驶是一个不断发展的研究领域,在科学、经济和社会方面都带来了诸多益处。尽管该领域已有多项研究,但目前尚无完全自主的车辆,尤其是用于越野导航的车辆。自主车辆(AV)导航是一个基于多种技术和算法应用的数据采集、管理与理解的复杂过程。特别是,自动驾驶辅助系统支持诸如传感与地形感知、实时车辆地图绘制与定位、路径预测与驱动、通信与安全措施等关键功能。

方法

在这项工作中,提出了一种用于越野环境中车辆自动驾驶的原创方法,该方法结合了视频帧的语义分割和后续的实时路线规划。为检验该提议的相关性,设计了一个面向资源受限设备的越野场景辅助驾驶模块化框架。在场景感知模块中,使用深度神经网络对从摄像头获取的红-绿-蓝(RGB)图像进行分割。第二个可通行性模块将激光雷达(LiDAR)点云与分割结果相融合,以创建一个二进制占用网格地图,从而在自主导航期间提供场景理解。最后,基于快速探索随机树(RRT)算法的最后一个模块预测路径。使用弗莱堡森林数据集(FFD)和RELLIS - 3D数据集来评估所提方法的性能。本文的理论贡献包括适用于越野驾驶场景的图像语义分割原创方法,以及将最短路径搜索A*算法和RRT算法应用于AV路径规划。

结果

报告的结果非常有前景,与先前报道的解决方案相比具有多个优势。对于FFD数据集,分割精度达到85.9%,对于RELLIS - 3D数据集达到79.5%,涵盖了最常见的语义类别。与其他方法相比,所提方法在路径规划的计算时间方面更快。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/11323055/c8b0a1e1baa5/peerj-cs-10-2209-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验