Communication and Network Laboratory, Dalian University, Dalian 116622, China.
Sensors (Basel). 2023 Jul 1;23(13):6087. doi: 10.3390/s23136087.
We propose an optimized Clockwork Recurrent Neural Network (CW-RNN) based approach to address temporal dynamics and nonlinearity in network security situations, improving prediction accuracy and real-time performance. By leveraging the clock-cycle RNN, we enable the model to capture both short-term and long-term temporal features of network security situations. Additionally, we utilize the Grey Wolf Optimization (GWO) algorithm to optimize the hyperparameters of the network, thus constructing an enhanced network security situation prediction model. The introduction of a clock-cycle for hidden units allows the model to learn short-term information from high-frequency update modules while retaining long-term memory from low-frequency update modules, thereby enhancing the model's ability to capture data patterns. Experimental results demonstrate that the optimized clock-cycle RNN outperforms other network models in extracting the temporal and nonlinear features of network security situations, leading to improved prediction accuracy. Furthermore, our approach has low time complexity and excellent real-time performance, ideal for monitoring large-scale network traffic in sensor networks.
我们提出了一种基于优化的时钟循环递归神经网络(CW-RNN)的方法来解决网络安全情况下的时间动态和非线性问题,提高了预测准确性和实时性能。通过利用时钟周期 RNN,我们使模型能够捕获网络安全情况的短期和长期时间特征。此外,我们利用灰狼优化(GWO)算法来优化网络的超参数,从而构建一个增强的网络安全情况预测模型。隐藏单元的时钟周期的引入允许模型从高频更新模块中学习短期信息,同时从低频更新模块中保留长期记忆,从而增强模型捕获数据模式的能力。实验结果表明,优化的时钟周期 RNN 在提取网络安全情况的时间和非线性特征方面优于其他网络模型,从而提高了预测精度。此外,我们的方法具有低时间复杂度和出色的实时性能,非常适合在传感器网络中监测大规模网络流量。