Suppr超能文献

SY-Net:一种基于六层特征融合网络和并行预测头结构的水稻种子实例分割方法。

SY-Net: A Rice Seed Instance Segmentation Method Based on a Six-Layer Feature Fusion Network and a Parallel Prediction Head Structure.

作者信息

Ye Sheng, Liu Weihua, Zeng Shan, Wu Guiju, Chen Liangyan, Lai Huaqing, Yan Zi

机构信息

School of Electric & Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China.

School of Mathematics & Computer Science, Wuhan Polytechnic University, Wuhan 430023, China.

出版信息

Sensors (Basel). 2023 Jul 6;23(13):6194. doi: 10.3390/s23136194.

Abstract

During the rice quality testing process, the precise segmentation and extraction of grain pixels is a key technique for accurately determining the quality of each seed. Due to the similar physical characteristics, small particles and dense distributions of rice seeds, properly analysing rice is a difficult problem in the field of target segmentation. In this paper, a network called SY-net, which consists of a feature extractor module, a feature pyramid fusion module, a prediction head module and a prototype mask generation module, is proposed for rice seed instance segmentation. In the feature extraction module, a transformer backbone is used to improve the ability of the network to learn rice seed features; in the pyramid fusion module and the prediction head module, a six-layer feature fusion network and a parallel prediction head structure are employed to enhance the utilization of feature information; and in the prototype mask generation module, a large feature map is used to generate high-quality masks. Training and testing were performed on two public datasets and one private rice seed dataset. The results showed that SY-net achieved a mean average precision (mAP) of 90.71% for the private rice seed dataset and an average precision (AP) of 16.5% with small targets in COCO2017. The network improved the efficiency of rice seed segmentation and showed excellent application prospects in performing rice seed quality testing.

摘要

在水稻品质检测过程中,精确分割和提取籽粒像素是准确判定每粒种子品质的一项关键技术。由于水稻种子物理特性相似、颗粒小且分布密集,对水稻进行恰当分析是目标分割领域的一个难题。本文提出一种名为SY-net的网络用于水稻种子实例分割,该网络由特征提取模块、特征金字塔融合模块、预测头模块和原型掩码生成模块组成。在特征提取模块中,使用Transformer主干网络来提高网络学习水稻种子特征的能力;在金字塔融合模块和预测头模块中,采用六层特征融合网络和并行预测头结构来增强特征信息的利用率;在原型掩码生成模块中,利用大尺寸特征图生成高质量掩码。在两个公共数据集和一个私有水稻种子数据集上进行了训练和测试。结果表明,SY-net在私有水稻种子数据集上的平均精度均值(mAP)达到90.71%,在COCO2017中对小目标的平均精度(AP)为16.5%。该网络提高了水稻种子分割的效率,在进行水稻种子品质检测方面展现出优异的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1453/10346631/e6a461fdc995/sensors-23-06194-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验