Suppr超能文献

TGDAUNet:基于 Transformer 和 GCNN 的双分支注意力 U-Net 用于医学图像分割。

TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image segmentation.

机构信息

Co-Innovation Center of Shandong Colleges and Universities: Future Intelligent Computing, School of Computer Science and Technology, Shandong Technology and Business University, Laishan District, Yantai, 264005, China.

Co-Innovation Center of Shandong Colleges and Universities: Future Intelligent Computing, School of Computer Science and Technology, Shandong Technology and Business University, Laishan District, Yantai, 264005, China.

出版信息

Comput Biol Med. 2023 Dec;167:107583. doi: 10.1016/j.compbiomed.2023.107583. Epub 2023 Oct 21.

Abstract

Accurate and automatic segmentation of medical images is a key step in clinical diagnosis and analysis. Currently, the successful application of Transformers' model in the field of computer vision, researchers have begun to gradually explore the application of Transformers in medical segmentation of images, especially in combination with convolutional neural networks with coding-decoding structure, which have achieved remarkable results in the field of medical segmentation. However, most studies have combined Transformers with CNNs at a single scale or processed only the highest-level semantic feature information, ignoring the rich location information in the lower-level semantic feature information. At the same time, for problems such as blurred structural boundaries and heterogeneous textures in images, most existing methods usually simply connect contour information to capture the boundaries of the target. However, these methods cannot capture the precise outline of the target and ignore the potential relationship between the boundary and the region. In this paper, we propose the TGDAUNet, which consists of a dual-branch backbone network of CNNs and Transformers and a parallel attention mechanism, to achieve accurate segmentation of lesions in medical images. Firstly, high-level semantic feature information of the CNN backbone branches is fused at multiple scales, and the high-level and low-level feature information complement each other's location and spatial information. We further use the polarised self-attentive (PSA) module to reduce the impact of redundant information caused by multiple scales, to better couple with the feature information extracted from the Transformers backbone branch, and to establish global contextual long-range dependencies at multiple scales. In addition, we have designed the Reverse Graph-reasoned Fusion (RGF) module and the Feature Aggregation (FA) module to jointly guide the global context. The FA module aggregates high-level semantic feature information to generate an original global predictive segmentation map. The RGF module captures non-significant features of the boundaries in the original or secondary global prediction segmentation graph through a reverse attention mechanism, establishing a graph reasoning module to explore the potential semantic relationships between boundaries and regions, further refining the target boundaries. Finally, to validate the effectiveness of our proposed method, we compare our proposed method with the current popular methods in the CVC-ClinicDB, Kvasir-SEG, ETIS, CVC-ColonDB, CVC-300,datasets as well as the skin cancer segmentation datasets ISIC-2016 and ISIC-2017. The large number of experimental results show that our method outperforms the currently popular methods. Source code is released at https://github.com/sd-spf/TGDAUNet.

摘要

医学图像的准确和自动分割是临床诊断和分析的关键步骤。目前,Transformer 模型在计算机视觉领域的成功应用,研究人员已经开始逐步探索 Transformer 在医学图像分割中的应用,特别是与具有编码-解码结构的卷积神经网络相结合,在医学分割领域取得了显著的成果。然而,大多数研究都是在单一尺度上结合 Transformer 和 CNN 进行处理,或者仅处理最高级别的语义特征信息,忽略了低级语义特征信息中的丰富位置信息。同时,对于图像中结构边界模糊和纹理不均匀等问题,大多数现有方法通常只是简单地连接轮廓信息来捕捉目标的边界。然而,这些方法无法捕捉目标的精确轮廓,也忽略了边界和区域之间的潜在关系。在本文中,我们提出了 TGDAUNet,它由一个 CNN 和 Transformer 的双分支骨干网络和一个并行注意力机制组成,以实现医学图像中病变的精确分割。首先,在多个尺度上融合 CNN 骨干分支的高级语义特征信息,使高级和低级特征信息相互补充位置和空间信息。我们进一步使用极化自注意(PSA)模块来减少多尺度引起的冗余信息的影响,更好地与来自 Transformer 骨干分支提取的特征信息耦合,并在多个尺度上建立全局上下文的长程依赖关系。此外,我们设计了反向图推理融合(RGF)模块和特征聚合(FA)模块来共同指导全局上下文。FA 模块聚合高级语义特征信息,生成原始全局预测分割图。RGF 模块通过反向注意机制捕捉原始或二次全局预测分割图中边界的非显著特征,建立图推理模块,探索边界和区域之间的潜在语义关系,进一步细化目标边界。最后,为了验证我们提出的方法的有效性,我们将我们提出的方法与当前在 CVC-ClinicDB、Kvasir-SEG、ETIS、CVC-ColonDB、CVC-300 以及皮肤癌分割数据集 ISIC-2016 和 ISIC-2017 上的流行方法进行了比较。大量的实验结果表明,我们的方法优于当前流行的方法。源代码可在 https://github.com/sd-spf/TGDAUNet 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验