Quantitative Methods Program, Department of Psychology, York University, Toronto, Ontario, Canada.
Br J Math Stat Psychol. 2024 Feb;77(1):103-129. doi: 10.1111/bmsp.12317. Epub 2023 Jul 13.
It has been suggested that equivalence testing (otherwise known as negligible effect testing) should be used to evaluate model fit within structural equation modelling (SEM). In this study, we propose novel variations of equivalence tests based on the popular root mean squared error of approximation and comparative fit index fit indices. Using Monte Carlo simulations, we compare the performance of these novel tests to other existing equivalence testing-based fit indices in SEM, as well as to other methods commonly used to evaluate model fit. Results indicate that equivalence tests in SEM have good Type I error control and display considerable power for detecting well-fitting models in medium to large sample sizes. At small sample sizes, relative to traditional fit indices, equivalence tests limit the chance of supporting a poorly fitting model. We also present an illustrative example to demonstrate how equivalence tests may be incorporated in model fit reporting. Equivalence tests in SEM also have unique interpretational advantages compared to other methods of model fit evaluation. We recommend that equivalence tests be utilized in conjunction with descriptive fit indices to provide more evidence when evaluating model fit.
有人认为,在结构方程建模(SEM)中,应该使用等效性检验(也称为可忽略效应检验)来评估模型拟合度。在这项研究中,我们基于广受欢迎的近似均方根误差和比较拟合指数拟合指标,提出了等效性检验的新变体。通过蒙特卡罗模拟,我们比较了这些新检验与 SEM 中基于其他等效性检验的拟合指标以及其他常用的评估模型拟合度的方法的性能。结果表明,SEM 中的等效性检验具有良好的Ⅰ类错误控制,并在中等至大样本量下对检测拟合良好的模型具有相当大的功效。在小样本量下,与传统的拟合指标相比,等效性检验限制了支持拟合不良模型的机会。我们还提供了一个实例来说明如何在模型拟合报告中纳入等效性检验。与其他模型拟合评估方法相比,SEM 中的等效性检验还具有独特的解释优势。我们建议将等效性检验与描述性拟合指标结合使用,以在评估模型拟合度时提供更多证据。