Soltani Shamsi, Hinman Jessica A, Blanco-Velazquez Isela, Banchoff Ann W, Campero Maria I, Nelson Lorene M, King Abby C
Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305.
Department of Medicine (Stanford Prevention Research Center), Stanford University School of Medicine, Stanford, CA 94305.
J Maps. 2023;19(1). doi: 10.1080/17445647.2023.2216217. Epub 2023 Jun 25.
Social and spatial contexts affect health, and understanding nuances of context is key to informing successful interventions for health equity. Layering mixed methods and mixed scale data sources to visualize patterns of health outcomes facilitates analysis of both broad trends and person-level experiences across time and space. We used micro-scale citizen scientist-collected data from four Bay Area communities along with aggregate epidemiologic and population-level data sets to illustrate barriers to, and facilitators of, physical activity in low-income aging adults. These data integrations highlight the synergistic value added by combining data sources, and what might be missed by relying on either a micro- or macro-level data source alone. Mixed methods and granularity data integration can generate a deeper understanding of environmental context, which in turn can inform more relevant and attainable community, advocacy, and policy improvements.
社会和空间背景会影响健康,理解背景的细微差别是为实现健康公平而进行成功干预的关键。将混合方法和混合尺度数据源分层以可视化健康结果模式,有助于分析广泛趋势以及跨时间和空间的个人层面经历。我们使用了来自旧金山湾区四个社区的微观层面公民科学家收集的数据,以及汇总的流行病学和人口层面数据集,来说明低收入老年人身体活动的障碍和促进因素。这些数据整合凸显了结合数据源所带来的协同价值,以及仅依赖微观或宏观层面数据源可能会遗漏的内容。混合方法和粒度数据整合能够更深入地理解环境背景,进而为更相关且可实现的社区、宣传和政策改进提供信息。