School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China.
School of Bioscience and Technology, Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang Medical University, Weifang, 261053, China.
Adv Sci (Weinh). 2023 Sep;10(26):e2302123. doi: 10.1002/advs.202302123. Epub 2023 Jul 14.
Cardiovascular disease is the leading cause of death worldwide. Reperfusion therapy is vital to patient survival after a heart attack but can cause myocardial ischemia/reperfusion injury (MI/RI). Nitric oxide (NO) can ameliorate MI/RI and is a key molecule for drug development. However, reactive oxygen species (ROS) can easily oxidize NO to peroxynitrite, which causes secondary cardiomyocyte damage. Herein, L-arginine-loaded selenium-coated gold nanocages (AAS) are designed, synthesized, and modified with PCM (WLSEAGPVVTVRALRGTGSW) to obtain AASP, which targets cardiomyocytes, exhibits increased cellular uptake, and improves photoacoustic imaging in vitro and in vivo. AASP significantly inhibits oxygen glucose deprivation/reoxygenation (OGD/R)-induced H9C2 cell cytotoxicity and apoptosis. Mechanistic investigation revealed that AASP improves mitochondrial membrane potential (MMP), restores ATP synthase activity, blocks ROS generation, and prevents NO oxidation, and NO blocks ROS release by regulating the closing of the mitochondrial permeability transition pore (mPTP). AASP administration in vivo improves myocardial function, inhibits myocardial apoptosis and fibrosis, and ultimately attenuates MI/RI in rats by maintaining mitochondrial function and regulating NO signaling. AASP shows good safety and biocompatibility in vivo. This findings confirm the rational design of AASP, which can provide effective treatment for MI/RI.
心血管疾病是全球范围内导致死亡的主要原因。再灌注治疗对于心脏病发作后的患者生存至关重要,但会导致心肌缺血/再灌注损伤(MI/RI)。一氧化氮(NO)可以改善 MI/RI,是药物开发的关键分子。然而,活性氧(ROS)很容易将 NO 氧化为过氧亚硝酸盐,从而导致心肌细胞的继发性损伤。在此,设计、合成并修饰了负载 L-精氨酸的硒涂层金纳米笼(AAS),得到了靶向心肌细胞的 AASP,其具有更高的细胞摄取率,并改善了体外和体内的光声成像。AASP 显著抑制了氧葡萄糖剥夺/复氧(OGD/R)诱导的 H9C2 细胞毒性和凋亡。机制研究表明,AASP 可改善线粒体膜电位(MMP),恢复 ATP 合酶活性,阻断 ROS 的产生,并防止 NO 氧化,而 NO 通过调节线粒体通透性转换孔(mPTP)的关闭来阻止 ROS 的释放。体内给予 AASP 可改善心肌功能,抑制心肌细胞凋亡和纤维化,最终通过维持线粒体功能和调节 NO 信号来减轻大鼠的 MI/RI。AASP 在体内具有良好的安全性和生物相容性。这些发现证实了 AASP 的合理设计,为 MI/RI 提供了有效的治疗方法。