Suppr超能文献

利用纵向图谱创建患者特异性数字体模,以评估自适应肺部放疗中可变形CT-CBCT配准。

Creating patient-specific digital phantoms with a longitudinal atlas for evaluating deformable CT-CBCT registration in adaptive lung radiotherapy.

作者信息

Meyer Sebastian, Alam Sadegh, Kuo Li Cheng, Hu Yu-Chi, Liu Yilin, Lu Wei, Yorke Ellen, Li Anyi, Cerviño Laura, Zhang Pengpeng

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

出版信息

Med Phys. 2024 Feb;51(2):1405-1414. doi: 10.1002/mp.16606. Epub 2023 Jul 14.

Abstract

BACKGROUND

Quality assurance of deformable image registration (DIR) is challenging because the ground truth is often unavailable. In addition, current approaches that rely on artificial transformations do not adequately resemble clinical scenarios encountered in adaptive radiotherapy.

PURPOSE

We developed an atlas-based method to create a variety of patient-specific serial digital phantoms with CBCT-like image quality to assess the DIR performance for longitudinal CBCT imaging data in adaptive lung radiotherapy.

METHODS

A library of deformations was created by extracting the longitudinal changes observed between a planning CT and weekly CBCT from an atlas of lung radiotherapy patients. The planning CT of an inquiry patient was first deformed by mapping the deformation pattern from a matched atlas patient, and subsequently appended with CBCT artifacts to imitate a weekly CBCT. Finally, a group of digital phantoms around an inquiry patient was produced to simulate a series of possible evolutions of tumor and adjacent normal structures. We validated the generated deformation vector fields (DVFs) to ensure numerically and physiologically realistic transformations. The proposed framework was applied to evaluate the performance of the DIR algorithm implemented in the commercial Eclipse treatment planning system in a retrospective study of eight inquiry patients.

RESULTS

The generated DVFs were inverse consistent within less than 3 mm and did not exhibit unrealistic folding. The deformation patterns adequately mimicked the observed longitudinal anatomical changes of the matched atlas patients. Worse Eclipse DVF accuracy was observed in regions of low image contrast or artifacts. The structure volumes exhibiting a DVF error magnitude of equal or more than 2 mm ranged from 24.5% (spinal cord) to 69.2% (heart) and the maximum DVF error exceeded 5 mm for all structures except the spinal cord. Contour-based evaluations showed a high degree of alignment with dice similarity coefficients above 0.8 in all cases, which underestimated the overall DVF accuracy within the structures.

CONCLUSIONS

It is feasible to create and augment digital phantoms based on a particular patient of interest using multiple series of deformation patterns from matched patients in an atlas. This can provide a semi-automated procedure to complement the quality assurance of CT-CBCT DIR and facilitate the clinical implementation of image-guided and adaptive radiotherapy that involve longitudinal CBCT imaging studies.

摘要

背景

由于常常无法获得真实情况,可变形图像配准(DIR)的质量保证具有挑战性。此外,当前依赖人工变换的方法并不能充分模拟自适应放射治疗中遇到的临床场景。

目的

我们开发了一种基于图谱的方法,以创建具有类似CBCT图像质量的各种患者特异性序列数字体模,用于评估自适应肺部放射治疗中纵向CBCT成像数据的DIR性能。

方法

通过从肺部放射治疗患者图谱中提取计划CT与每周CBCT之间观察到的纵向变化,创建了一个变形库。首先通过映射来自匹配图谱患者的变形模式使询问患者的计划CT变形,随后附加CBCT伪影以模拟每周的CBCT。最后,围绕询问患者生成一组数字体模,以模拟肿瘤和相邻正常结构的一系列可能演变。我们验证了生成的变形矢量场(DVF),以确保数值和生理上逼真的变换。在对八名询问患者的回顾性研究中,将所提出的框架应用于评估商业Eclipse治疗计划系统中实施的DIR算法的性能。

结果

生成的DVF在小于3毫米的范围内反向一致,并且没有表现出不切实际的折叠。变形模式充分模拟了匹配图谱患者观察到的纵向解剖变化。在低图像对比度或伪影区域观察到Eclipse DVF准确性较差。表现出DVF误差幅度等于或大于2毫米的结构体积范围从24.5%(脊髓)到69.2%(心脏),除脊髓外所有结构的最大DVF误差超过5毫米。基于轮廓的评估显示在所有情况下骰子相似系数高于0.8,具有高度对齐性,这低估了结构内的整体DVF准确性。

结论

使用图谱中匹配患者的多个系列变形模式,基于特定感兴趣患者创建和扩充数字体模是可行的。这可以提供一种半自动程序,以补充CT-CBCT DIR的质量保证,并促进涉及纵向CBCT成像研究的图像引导和自适应放射治疗的临床实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31cb/10787815/6803ccfe14ce/nihms-1916258-f0001.jpg

相似文献

本文引用的文献

5
Early Prediction of Acute Esophagitis for Adaptive Radiation Therapy.早期预测自适应放射治疗中的急性食管炎。
Int J Radiat Oncol Biol Phys. 2021 Jul 1;110(3):883-892. doi: 10.1016/j.ijrobp.2021.01.007. Epub 2021 Jan 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验