Suppr超能文献

通过原位环境透射电子显微镜对纳米级碳点封装金属有机框架热解进行实时成像和定量演化研究

Real-Time Imaging and Quantitative Evolution for Pyrolysis of Carbon Dots-Encapsulated Metal-Organic Frameworks at the Nanoscale by In Situ Environmental Transmission Electron Microscopy.

作者信息

Wang Dan, Zhao Zhijian, Shi Bo, Wang Jie-Xin, Chen Jian-Feng

机构信息

State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

出版信息

ACS Appl Mater Interfaces. 2023 Jul 26;15(29):35358-35365. doi: 10.1021/acsami.3c05715. Epub 2023 Jul 14.

Abstract

The pyrolysis of metal-organic frameworks (MOF) has been widely used approach to generate hierarchical structures with the corresponding metal, metal carbide, or metal oxide nanoparticles embedded in a porous carbon matrix with a high specific surface area for industrial catalysis, energy storage and transfer, etc. MOF-derived heterogeneous catalysts can be constructed by the encapsulation of carbon dots (CDs) with plenty of hydroxyl and amine groups to enhance the performance of the final product. Controlled formation of metallic carbon structures at the nanoscale, especially matter cycling and transformation on the nanoscale interface, is important for the production of industrial catalysts as well as the research of materials science and engineering progress. However, the mass transfer at the nanoscale during the processing of MOF pyrolysis remains less understood due to the lack of direct observation. Herein, by using in situ environmental transmission electron microscopy, real-time imaging and quantitative evolution of porous carbon decorated with metal species by the pyrolysis of CDs-encapsulated zeolitic imidazolate framework-67 are achieved. The migration of Co, the flow of aggregates, and the growth of carbon nanotubes observed in the nanoscale pyrolysis laboratory working at 600 °C with an air atmosphere are present. Experimental studies based on reduction and oxidation reaction models reveal that the synergistic effect between doped graphite nitrogen and confined Co nanoparticles is beneficial for boosting catalytic performance.

摘要

金属有机框架(MOF)的热解是一种广泛应用的方法,用于生成具有相应金属、金属碳化物或金属氧化物纳米颗粒的分级结构,这些纳米颗粒嵌入具有高比表面积的多孔碳基质中,用于工业催化、能量存储和传输等。通过封装具有大量羟基和胺基的碳点(CDs)可以构建MOF衍生的多相催化剂,以提高最终产物的性能。在纳米尺度上可控地形成金属碳结构,特别是纳米尺度界面上的物质循环和转化,对于工业催化剂的生产以及材料科学与工程进展的研究都很重要。然而,由于缺乏直接观察,MOF热解过程中纳米尺度的传质仍不太清楚。在此,通过使用原位环境透射电子显微镜,实现了对封装有CDs的沸石咪唑酯骨架-67热解修饰的多孔碳的实时成像和定量演化。观察到在600°C空气气氛下的纳米尺度热解实验中Co的迁移、聚集体的流动以及碳纳米管的生长。基于还原和氧化反应模型的实验研究表明,掺杂石墨氮与受限Co纳米颗粒之间的协同效应有利于提高催化性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验