Suppr超能文献

SBOannotator:一个用于自动分配系统生物学本体论术语的 Python 工具。

SBOannotator: a Python tool for the automated assignment of systems biology ontology terms.

机构信息

Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, 72076 Tübingen, Germany.

Department of Computer Science, Eberhard Karl University of Tübingen, 72076 Tübingen, Germany.

出版信息

Bioinformatics. 2023 Jul 1;39(7). doi: 10.1093/bioinformatics/btad437.

Abstract

MOTIVATION

The number and size of computational models in biology have drastically increased over the past years and continue to grow. Modeled networks are becoming more complex, and reconstructing them from the beginning in an exchangeable and reproducible manner is challenging. Using precisely defined ontologies enables the encoding of field-specific knowledge and the association of disparate data types. In computational modeling, the medium for representing domain knowledge is the set of orthogonal structured controlled vocabularies named Systems Biology Ontology (SBO). The SBO terms enable modelers to explicitly define and describe model entities, including their roles and characteristics.

RESULTS

Here, we present the first standalone tool that automatically assigns SBO terms to multiple entities of a given SBML model, named the SBOannotator. The main focus lies on the reactions, as the correct assignment of precise SBO annotations requires their extensive classification. Our implementation does not consider only top-level terms but examines the functionality of the underlying enzymes to allocate precise and highly specific ontology terms to biochemical reactions. Transport reactions are examined separately and are classified based on the mechanism of molecule transport. Pseudo-reactions that serve modeling purposes are given reasonable terms to distinguish between biomass production and the import or export of metabolites. Finally, other model entities, such as metabolites and genes, are annotated with appropriate terms. Including SBO annotations in the models will enhance the reproducibility, usability, and analysis of biochemical networks.

AVAILABILITY AND IMPLEMENTATION

SBOannotator is freely available from https://github.com/draeger-lab/SBOannotator/.

摘要

动机

在过去的几年中,生物学中的计算模型的数量和规模急剧增加,并且还在继续增长。建模网络变得越来越复杂,以可交换和可重复的方式从头开始重建它们具有挑战性。使用精确定义的本体论可以对领域特定知识进行编码,并将不同类型的数据关联起来。在计算建模中,用于表示领域知识的媒介是一组名为系统生物学本体论(SBO)的正交结构化受控词汇表。SBO 术语使建模人员能够明确定义和描述模型实体,包括它们的角色和特征。

结果

在这里,我们介绍了第一个自动为给定 SBML 模型的多个实体分配 SBO 术语的独立工具,名为 SBOannotator。重点在于反应,因为正确分配精确的 SBO 注释需要对其进行广泛的分类。我们的实现不仅考虑了顶级术语,还检查了基础酶的功能,以便为生化反应分配精确和高度特定的本体术语。运输反应是单独检查的,并根据分子运输的机制进行分类。为建模目的而存在的伪反应被赋予合理的术语,以区分生物量的产生和代谢物的输入或输出。最后,其他模型实体,如代谢物和基因,被注释为适当的术语。在模型中包含 SBO 注释将提高生化网络的可重复性、可用性和分析能力。

可用性和实现

SBOannotator 可从 https://github.com/draeger-lab/SBOannotator/ 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5517/10371491/a92d671cc48e/btad437f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验