Suppr超能文献

通过机器学习预测分子的极化率和二阶超极化率的量级

Predict the Polarizability and Order of Magnitude of Second Hyperpolarizability of Molecules by Machine Learning.

作者信息

Zhao Guoxiang, Yan Weiyin, Wang Zirui, Kang Yao, Ma Zuju, Gu Zhi-Gang, Li Qiao-Hong, Zhang Jian

机构信息

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, Fujian, P.R. China.

School of Chemistry, Fuzhou University, 350108 Fuzhou, Fujian, P.R. China.

出版信息

J Phys Chem A. 2023 Jul 27;127(29):6109-6115. doi: 10.1021/acs.jpca.2c08563. Epub 2023 Jul 14.

Abstract

In order to determine the polarizability and hyperpolarizability of a molecule, several key parameters need to be known, including the excitation energy of the ground and excited states, the transition dipole moment, and the difference of dipole moment between the ground and excited states. In this study, a machine-learning model was developed and trained to predict the molecular polarizability and second-order hyperpolarizability on a subset of QM9 data set. The density of states was employed as input to the model. The results demonstrated that the machine-learning model effectively estimated both polarizability and the order of magnitude of second-order hyperpolarizability. However, the model was unable to predict the dipole moment and first-order hyperpolarizability, suggesting limitations in its ability to predict the difference of dipole moment between the ground and excited states. The computational efficiency of machine-learning models compared to traditional quantum mechanical calculations enables the possibility of large-scale screening of molecules that satisfy specific requirements using existing databases. This work presents a potential solution for the efficient exploration and analysis of molecules on a larger scale.

摘要

为了确定分子的极化率和超极化率,需要了解几个关键参数,包括基态和激发态的激发能、跃迁偶极矩以及基态和激发态之间的偶极矩差异。在本研究中,开发并训练了一个机器学习模型,以预测QM9数据集子集上的分子极化率和二阶超极化率。态密度被用作模型的输入。结果表明,该机器学习模型有效地估计了极化率和二阶超极化率的数量级。然而,该模型无法预测偶极矩和一阶超极化率,这表明其在预测基态和激发态之间偶极矩差异的能力上存在局限性。与传统量子力学计算相比,机器学习模型的计算效率使得利用现有数据库对满足特定要求的分子进行大规模筛选成为可能。这项工作为在更大规模上高效探索和分析分子提供了一种潜在的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验