Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
Cell Rep. 2023 Jul 25;42(7):112774. doi: 10.1016/j.celrep.2023.112774. Epub 2023 Jul 12.
Amyloid precursor protein (APP) internalization via clathrin-/dynamin-mediated endocytosis (CME) mediated by its YENPTY motif into endosomes containing β-secretase is proposed to be critical for amyloid-beta (Aβ) production. Here, we show that somatodendritic APP internalization in primary rodent neurons is not blocked by inhibiting dynamin or mutating the YENPTY motif, in contrast to non-neuronal cell lines. These phenomena, confirmed in induced human neurons under dynamin inhibition, occur during basal conditions and chemical long-term-depression stimulus, pointing to a clathrin-independent internalization pathway for somatodendritic APP. Mutating the YENPTY motif does not alter APP recycling, degradation, or endolysosomal colocalization. However, both dynamin inhibition and the YENPTY mutant significantly decrease secreted Aβ in neurons, suggesting that internalized somatodendritic APP may not constitute a major source of Aβ. Interestingly, like APP, somatodendritic low-density lipoprotein receptor (LDLR) internalization does not require its CME motif. These results highlight intriguing differences in neuronal internalization pathways and refine our understanding of Aβ production and secretion.
淀粉样前体蛋白(APP)通过其 YENPTY 基序被网格蛋白/动力蛋白介导的内吞作用(CME)内吞到含有β-分泌酶的内体中,这被认为对淀粉样β(Aβ)的产生至关重要。在这里,我们表明,与非神经元细胞系不同,原代啮齿动物神经元中的树突体 APP 内吞作用不会被抑制动力蛋白或突变 YENPTY 基序所阻断。这些在动力蛋白抑制下的诱导人神经元中得到证实的现象发生在基础条件和化学性长期抑郁刺激期间,表明树突体 APP 存在一种非网格蛋白依赖的内吞途径。突变 YENPTY 基序不会改变 APP 的回收、降解或内体共定位。然而,动力蛋白抑制和 YENPTY 突变都显著减少神经元中分泌的 Aβ,表明内吞的树突体 APP 可能不是 Aβ 的主要来源。有趣的是,与 APP 一样,树突体低密度脂蛋白受体(LDLR)的内吞也不需要其 CME 基序。这些结果突出了神经元内吞途径的有趣差异,并深化了我们对 Aβ 产生和分泌的理解。