Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030.
Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
J Neurosci. 2023 Aug 2;43(31):5593-5607. doi: 10.1523/JNEUROSCI.0601-23.2023. Epub 2023 Jul 14.
Aberrant activation of presynaptic NMDARs in the spinal dorsal horn is integral to opioid-induced hyperalgesia and analgesic tolerance. However, the signaling mechanisms responsible for opioid-induced NMDAR hyperactivity remain poorly identified. Here, we show that repeated treatment with morphine or fentanyl reduced monomeric mGluR5 protein levels in the dorsal root ganglion (DRG) but increased levels of mGluR5 monomers and homodimers in the spinal cord in mice and rats of both sexes. Coimmunoprecipitation analysis revealed that monomeric and dimeric mGluR5 in the spinal cord, but not monomeric mGluR5 in the DRG, directly interacted with GluN1. By contrast, mGluR5 did not interact with μ-opioid receptors in the DRG or spinal cord. Repeated morphine treatment markedly increased the mGluR5-GluN1 interaction and protein levels of mGluR5 and GluN1 in spinal synaptosomes. The mGluR5 antagonist MPEP reversed morphine treatment-augmented mGluR5-GluN1 interactions, GluN1 synaptic expression, and dorsal root-evoked monosynaptic EPSCs of dorsal horn neurons. Furthermore, CRISPR-Cas9-induced conditional mGluR5 knockdown in DRG neurons normalized mGluR5 levels in spinal synaptosomes and NMDAR-mediated EPSCs of dorsal horn neurons increased by morphine treatment. Correspondingly, intrathecal injection of MPEP or conditional mGluR5 knockdown in DRG neurons not only potentiated the acute analgesic effect of morphine but also attenuated morphine treatment-induced hyperalgesia and tolerance. Together, our findings suggest that opioid treatment promotes mGluR5 trafficking from primary sensory neurons to the spinal dorsal horn. Through dimerization and direct interaction with NMDARs, presynaptic mGluR5 potentiates and/or stabilizes NMDAR synaptic expression and activity at primary afferent central terminals, thereby maintaining opioid-induced hyperalgesia and tolerance. Opioids are essential analgesics for managing severe pain caused by cancer, surgery, and tissue injury. However, these drugs paradoxically induce pain hypersensitivity and tolerance, which can cause rapid dose escalation and even overdose mortality. This study demonstrates, for the first time, that opioids promote trafficking of mGluR5, a G protein-coupled glutamate receptor, from peripheral sensory neurons to the spinal cord; there, mGluR5 proteins dimerize and physically interact with NMDARs to augment their synaptic expression and activity. Through dynamic interactions, the two distinct glutamate receptors mutually amplify and sustain nociceptive input from peripheral sensory neurons to the spinal cord. Thus, inhibiting mGluR5 activity or disrupting mGluR5-NMDAR interactions could reduce opioid-induced hyperalgesia and tolerance and potentiate opioid analgesic efficacy.
脊髓背角中突触前 NMDA 受体的异常激活是阿片类药物诱导的痛觉过敏和镇痛耐受的关键。然而,导致阿片类药物诱导的 NMDA 受体过度活跃的信号机制仍未得到很好的识别。在这里,我们表明,重复给予吗啡或芬太尼会降低背根神经节(DRG)中单体 mGluR5 蛋白水平,但会增加雄性和雌性小鼠和大鼠脊髓中 mGluR5 单体和同源二聚体的水平。共免疫沉淀分析显示,脊髓中的单体和二聚体 mGluR5,但不是 DRG 中的单体 mGluR5,直接与 GluN1 相互作用。相比之下,mGluR5 不会与 DRG 或脊髓中的 μ-阿片受体相互作用。重复给予吗啡治疗会显著增加脊髓突触体中 mGluR5-GluN1 相互作用以及 mGluR5 和 GluN1 的蛋白水平。mGluR5 拮抗剂 MPEP 逆转了吗啡治疗增强的 mGluR5-GluN1 相互作用、GluN1 突触表达和背角诱发的背角神经元单突触 EPSC。此外,DRG 神经元中 CRISPR-Cas9 诱导的条件性 mGluR5 敲低可使脊髓突触体中的 mGluR5 水平正常化,并使吗啡治疗引起的 NMDA 受体介导的背角神经元 EPSC 增加。相应地,鞘内注射 MPEP 或 DRG 神经元中的条件性 mGluR5 敲低不仅增强了吗啡的急性镇痛作用,而且减轻了吗啡治疗引起的痛觉过敏和耐受。总之,我们的研究结果表明,阿片类药物治疗促进了 mGluR5 从初级感觉神经元向脊髓背角的转运。通过二聚化和与 NMDA 受体的直接相互作用,突触前 mGluR5 增强和/或稳定了初级传入中枢末端 NMDA 受体的突触表达和活性,从而维持了阿片类药物诱导的痛觉过敏和耐受。阿片类药物是治疗癌症、手术和组织损伤引起的严重疼痛的重要镇痛药。然而,这些药物却反常地引起了疼痛过敏和耐受,这可能导致快速增加剂量甚至导致过量死亡。这项研究首次表明,阿片类药物促进了谷氨酸能 G 蛋白偶联受体 mGluR5 从外周感觉神经元向脊髓的转运;在那里,mGluR5 蛋白二聚化并与 NMDA 受体物理相互作用,从而增加其突触表达和活性。通过动态相互作用,这两种不同的谷氨酸受体相互放大并维持来自外周感觉神经元的伤害性传入信号到脊髓。因此,抑制 mGluR5 活性或破坏 mGluR5-NMDA 受体相互作用可能会降低阿片类药物引起的痛觉过敏和耐受,并增强阿片类药物的镇痛效果。