Suppr超能文献

应用原子力显微镜(AFM)示踪分析技术于脂双层中的药物相关膜蛋白的优势和潜在局限性。

Advantages and potential limitations of applying AFM kymograph analysis to pharmaceutically relevant membrane proteins in lipid bilayers.

机构信息

Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA.

Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA.

出版信息

Sci Rep. 2023 Jul 15;13(1):11427. doi: 10.1038/s41598-023-37910-7.

Abstract

Membrane proteins play critical roles in disease and in the disposition of many pharmaceuticals. A prime example is P-glycoprotein (Pgp) which moves a diverse range of drugs across membranes and out of the cell before a therapeutic payload can be delivered. Conventional structural biology methods have provided a valuable framework for comprehending the complex conformational changes underlying Pgp function, which also includes ATPase activity, but the lack of real-time information hinders understanding. Atomic force microscopy (AFM) is a single-molecule technique that is well-suited for studying active membrane proteins in bilayers and is poised to advance the field beyond static snapshots. After verifying Pgp activity in surface-support bilayers, we used kymograph analysis in conjunction with AFM imaging and simulations to study structural transitions at the 100 ms timescale. Though kymographs are frequently employed to boost temporal resolution, the limitations of the method have not been well characterized, especially for sparse non-crystalline distributions of pharmaceutically relevant membrane proteins like Pgp. Common experimental challenges are analyzed, including protein orientation, instrument noise, and drift. Surprisingly, a lateral drift of 75% of the protein dimension leads to only a 12% probability of erroneous state transition detection; average dwell time error achieves a maximum value of 6%. Rotational drift of proteins like Pgp, with azimuthally-dependent maximum heights, can lead to artifactual transitions. Torsional constraints can alleviate this potential pitfall. Confidence in detected transitions can be increased by adding conformation-altering ligands such as non-hydrolysable analogs. Overall, the data indicate that AFM kymographs are a viable method to access conformational dynamics for Pgp, but generalizations of the method should be made with caution.

摘要

膜蛋白在疾病和许多药物的处置中起着至关重要的作用。一个主要的例子是 P-糖蛋白(Pgp),它在药物有效载荷能够被递送到细胞之前,将各种药物穿过膜并排出细胞。传统的结构生物学方法为理解 Pgp 功能的复杂构象变化提供了有价值的框架,这也包括 ATP 酶活性,但缺乏实时信息阻碍了对其的理解。原子力显微镜(AFM)是一种单分子技术,非常适合研究双层膜中的活性膜蛋白,并有望将该领域从静态快照推进到实时动态。在验证表面支撑双层膜中 Pgp 的活性后,我们使用共焦曲线分析结合 AFM 成像和模拟,在 100 毫秒的时间尺度上研究结构转变。尽管共焦曲线常用于提高时间分辨率,但该方法的局限性尚未得到很好的描述,特别是对于像 Pgp 这样的药物相关膜蛋白的稀疏非结晶分布。分析了常见的实验挑战,包括蛋白质取向、仪器噪声和漂移。令人惊讶的是,蛋白质横向漂移 75%的尺寸只会导致错误状态转变检测的概率增加 12%;平均停留时间误差达到最大值 6%。像 Pgp 这样具有方位依赖性最大高度的蛋白质的旋转漂移会导致人为的转变。扭转约束可以减轻这种潜在的陷阱。通过添加构象改变配体(如不可水解的类似物)可以增加检测到的转变的置信度。总的来说,数据表明 AFM 共焦曲线是一种可行的方法,可以获取 Pgp 的构象动力学,但应该谨慎推广该方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90da/10349840/05d4543e8165/41598_2023_37910_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验