Suppr超能文献

原子力显微镜轨迹分析:两个膜蛋白的案例研究。

Atomic force microscope kymograph analysis: A case study of two membrane proteins.

机构信息

Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA.

Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA; Joint with Department of Biochemistry, University of Missouri-Columbia, Columbia MO 65211 USA.

出版信息

Methods. 2024 Mar;223:83-94. doi: 10.1016/j.ymeth.2024.01.013. Epub 2024 Jan 28.

Abstract

Kymograph analysis is employed across the biological atomic force microscopy (AFM) community to boost temporal resolution. The method is well suited for revealing protein dynamics at the single molecule level in near-native conditions. Yet, kymograph analysis comes with limitations that depend on several factors including protein geometry and instrumental drift. This work focuses on conformational dynamics of difficult-to-study sparse distributions of membrane proteins. We compare and contrast AFM kymograph analysis for two proteins, one of which (SecDF) exhibits conformational dynamics primarily in the vertical direction (normal to the membrane surface) and the other (Pgp) exhibits a combination of lateral dynamics and vertical motion. Common experimental issues are analyzed including translational and rotational drift. Conformational transition detection is evaluated via kymograph simulations followed by state detection algorithms. We find that kymograph analysis is largely robust to lateral drift. Displacement of the AFM line scan trajectory away from the protein center of mass by a few nanometers, roughly half of the molecule diameter, does not significantly affect transition detection nor generate undue dwell time errors. On the other hand, for proteins like Pgp that exhibit significant azimuthal maximum height dependence, rotational drift can potentially produce artifactual transitions. Measuring the height of a membrane protein protrusion is generally superior to measurement of width, confirming intuition based on vertical resolution superiority. In low signal-to-noise scenarios, common state detection algorithms struggle with transition detection as opposed to infinite hidden Markov models. AFM kymography represents a valuable addition to the membrane biophysics toolkit; continued hardware and software improvements are poised to expand the method's impact in the field.

摘要

Kymograph 分析被生物原子力显微镜(AFM)社区广泛用于提高时间分辨率。该方法非常适合在近天然条件下揭示单分子水平的蛋白质动力学。然而,Kymograph 分析存在一些限制,这些限制取决于几个因素,包括蛋白质的几何形状和仪器漂移。这项工作专注于难以研究的膜蛋白稀疏分布的构象动力学。我们比较和对比了两种蛋白质的 AFM Kymograph 分析,其中一种(SecDF)主要表现为垂直方向(垂直于膜表面)的构象动力学,另一种(Pgp)表现为侧向动力学和垂直运动的组合。分析了常见的实验问题,包括平移和旋转漂移。构象转换检测通过 Kymograph 模拟和状态检测算法进行评估。我们发现 Kymograph 分析对侧向漂移具有很强的鲁棒性。AFM 线扫描轨迹相对于蛋白质质心的位移仅几纳米,大约是分子直径的一半,不会显著影响转换检测,也不会产生不必要的停留时间误差。另一方面,对于像 Pgp 这样表现出显著的方位最大高度依赖性的蛋白质,旋转漂移可能会产生人为的转换。测量膜蛋白突出物的高度通常优于测量宽度,这证实了基于垂直分辨率优势的直观感觉。在低信噪比情况下,常见的状态检测算法在转换检测方面与无限隐马尔可夫模型相比存在困难。AFM Kymograph 代表了膜生物物理学工具包的一个有价值的补充;持续的硬件和软件改进将有望扩大该方法在该领域的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验