Rozich Emily, Randolph Lynsey K, Insolera Ryan
Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States.
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
Front Neurosci. 2023 Jun 29;17:1204068. doi: 10.3389/fnins.2023.1204068. eCollection 2023.
Mutations in the human gene VPS13D cause the adult-onset neurodegenerative disease ataxia. Our previous work showed that disruptions in the Vps13D gene in neurons causes mitochondrial defects. However, developmental lethality caused by Vps13D loss limited our understanding of the long-term physiological effects of Vps13D perturbation in neurons. Here, we optimized a previously generated system to temporally knock down expression precisely in adult neurons using a modification to the Gal4/UAS system. Adult-onset activation of Gal4 was enacted using the chemically-inducible tool which fuses a destabilization-domain to the Gal4 repressor Gal80 (Gal80-DD). Optimization of the Gal80-DD tool shows that feeding animals the DD-stabilizing drug trimethoprim (TMP) during development and rearing at a reduced temperature maximally represses Gal4 activity. Temperature shift and removal of TMP from the food after eclosion robustly activates Gal4 expression in adult neurons. Using the optimized Gal80-DD system, we find that adult-onset RNAi expression in neurons causes the accumulation of mitophagy intermediates, progressive deficits in locomotor activity, early lethality, and brain vacuolization characteristic of neurodegeneration. The development of this optimized system allows us to more precisely examine the degenerative phenotypes caused by disruption, and can likely be utilized in the future for other genes associated with neurological diseases whose manipulation causes developmental lethality in .
人类基因VPS13D的突变会导致成人期神经退行性疾病共济失调。我们之前的研究表明,神经元中Vps13D基因的破坏会导致线粒体缺陷。然而,Vps13D缺失引起的发育致死性限制了我们对神经元中Vps13D扰动的长期生理影响的理解。在此,我们优化了一个先前构建的系统,通过对Gal4/UAS系统进行改造,在成年神经元中精确地进行时间性基因敲低表达。使用化学诱导工具实现成年期Gal4的激活,该工具将一个去稳定结构域与Gal4阻遏物Gal80(Gal80-DD)融合。对Gal80-DD工具的优化表明,在发育过程中给动物喂食DD稳定药物甲氧苄啶(TMP)并在较低温度下饲养可最大程度地抑制Gal4活性。羽化后进行温度转换并从食物中去除TMP可强烈激活成年神经元中的Gal4表达。使用优化后的Gal80-DD系统,我们发现成年神经元中成年期RNAi表达会导致线粒体自噬中间体的积累、运动活性的进行性缺陷、早期致死率以及神经退行性变特有的脑空泡化。这种优化系统的开发使我们能够更精确地研究由破坏引起的退行性表型,并且未来可能用于其他与神经疾病相关的基因,这些基因的操作会导致发育致死。