Department of Chemistry, University of California Irvine, Irvine, California 92697, United States.
Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States.
J Am Chem Soc. 2023 Jul 26;145(29):16210-16217. doi: 10.1021/jacs.3c05153. Epub 2023 Jul 17.
Natural biological materials are formed by self-assembly processes and catalyze a myriad of reactions. Here, we report a programmable molecular assembly of designed synthetic polymers with engineered bacterial spores. This self-assembly process is driven by dynamic covalent bond formation on spore surface glycan and yields macroscopic materials that are structurally stable, self-healing, and recyclable. Molecular programming of polymer species shapes the physical properties of these materials while metabolically dormant spores allow for prolonged ambient storage. Incorporation of spores with genetically encoded functionalities enables operationally simple and repeated enzymatic catalysis. Our work combines molecular and genetic engineering to offer scalable and programmable synthesis of robust materials for sustainable biocatalysis.
天然生物材料是通过自组装过程形成的,并能催化无数的反应。在这里,我们报告了一种可编程的分子组装设计的合成聚合物与工程细菌孢子。这个自组装过程是由孢子表面聚糖上的动态共价键形成驱动的,产生了宏观的材料,具有结构稳定性、自修复性和可回收性。聚合物种类的分子编程塑造了这些材料的物理性质,而代谢休眠的孢子允许长时间在环境中储存。将具有遗传编码功能的孢子结合在一起,可以实现操作简单且可重复的酶催化。我们的工作结合了分子和遗传工程,为可持续生物催化提供了可扩展和可编程的坚固材料合成。