MSU-DOE Plant Research Laboratory, Michigan State University , East Lansing, Michigan, USA.
Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory , Berkeley, California, USA.
mBio. 2023 Aug 31;14(4):e0121623. doi: 10.1128/mbio.01216-23. Epub 2023 Jul 18.
We have discovered a new cluster of genes that is found exclusively in the Actinobacteria phylum. This locus includes genes for the 2-aminophenol -cleavage pathway and the shell proteins of a bacterial microcompartment (BMC) and has been named aromatics (ARO) for its putative role in the breakdown of aromatic compounds. In this study, we provide details about the distribution and composition of the ARO BMC locus and conduct phylogenetic, structural, and functional analyses of the first two enzymes in the catabolic pathway: a unique 2-aminophenol dioxygenase, which is exclusively found alongside BMC shell genes in Actinobacteria, and a semialdehyde dehydrogenase, which works downstream of the dioxygenase. Genomic analysis reveals variations in the complexity of the ARO loci across different orders. Some loci are simple, containing shell proteins and enzymes for the initial steps of the catabolic pathway, while others are extensive, encompassing all the necessary genes for the complete breakdown of 2-aminophenol into pyruvate and acetyl-CoA. Furthermore, our analysis uncovers two subtypes of ARO BMC that likely degrade either 2-aminophenol or catechol, depending on the presence of a pathway-specific gene within the ARO locus. The precise precursor of 2-aminophenol, which serves as the initial substrate and/or inducer for the ARO pathway, remains unknown, as our model organism cannot utilize 2-aminophenol as its sole energy source. However, using enzymatic assays, we demonstrate the dioxygenase's ability to cleave both 2-aminophenol and catechol , in collaboration with the aldehyde dehydrogenase, to facilitate the rapid conversion of these unstable and toxic intermediates. IMPORTANCE Bacterial microcompartments (BMCs) are proteinaceous organelles that are widespread among bacteria and provide a competitive advantage in specific environmental niches. Studies have shown that the genetic information necessary to form functional BMCs is encoded in loci that contain genes encoding shell proteins and the enzymatic core. This allows the bioinformatic discovery of BMCs with novel functions and expands our understanding of the metabolic diversity of BMCs. ARO loci, found only in Actinobacteria, contain genes encoding for phylogenetically remote shell proteins and homologs of the -cleavage degradation pathway enzymes that were shown to convert central aromatic intermediates into pyruvate and acetyl-CoA in gamma Proteobacteria. By analyzing the gene composition of ARO BMC loci and characterizing two core enzymes phylogenetically, structurally, and functionally, we provide an initial functional characterization of the ARO BMC, the most unusual BMC identified to date, distinctive among the repertoire of studied BMCs.
我们发现了一组仅存在于放线菌门中的新基因簇。该基因座包括 2-氨基酚裂解途径的基因和细菌微隔间(BMC)的外壳蛋白,并因其在芳香族化合物分解中的潜在作用而被命名为芳香族(ARO)。在这项研究中,我们提供了 ARO BMC 基因座的分布和组成的详细信息,并对分解途径中的前两个酶进行了系统发育、结构和功能分析:一种独特的 2-氨基酚双加氧酶,仅在放线菌中与 BMC 外壳基因共存,以及一种半醛脱氢酶,它位于双加氧酶的下游。基因组分析揭示了不同目之间 ARO 基因座复杂性的变化。一些基因座很简单,包含外壳蛋白和分解途径的初始步骤的酶,而另一些则很复杂,包含完全分解 2-氨基酚成丙酮酸和乙酰辅酶 A 所需的所有基因。此外,我们的分析揭示了两种可能降解 2-氨基酚或儿茶酚的 ARO BMC 亚型,这取决于 ARO 基因座内是否存在特定途径的基因。2-氨基酚的精确前体,作为 ARO 途径的初始底物和/或诱导物,仍然未知,因为我们的模式生物不能将 2-氨基酚用作其唯一的能源。然而,使用酶促测定,我们证明了双加氧酶与醛脱氢酶协同作用,能够裂解 2-氨基酚和儿茶酚,以促进这些不稳定和有毒中间体的快速转化。重要性细菌微隔间(BMCs)是广泛存在于细菌中的蛋白细胞器,为特定的环境小生境提供了竞争优势。研究表明,形成功能性 BMC 所需的遗传信息编码在包含外壳蛋白和酶核心编码基因的基因座中。这允许通过生物信息学发现具有新功能的 BMC,并扩展了我们对 BMC 代谢多样性的理解。仅在放线菌中发现的 ARO 基因座包含进化上遥远的外壳蛋白基因和 -裂解降解途径酶的同源物基因,这些酶被证明可以将中心芳香族中间体转化为丙酮酸和乙酰辅酶 A 在γ变形菌中。通过分析 ARO BMC 基因座的基因组成,并从系统发育、结构和功能上对两个核心酶进行特征描述,我们提供了对 ARO BMC 的初步功能表征,这是迄今为止发现的最不寻常的 BMC,在研究过的 BMC 中具有独特的特征。