Zhang Beibei, Fan Zeyu, Chen Yutao, Feng Chao, Li Shulong, Li Yanbo
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China.
Angew Chem Int Ed Engl. 2023 Sep 4;62(36):e202305123. doi: 10.1002/anie.202305123. Epub 2023 Jul 27.
Tantalum nitride (Ta N ) has emerged as a promising photoanode material for photoelectrochemical (PEC) water splitting. However, the inefficient electron-hole separation remains a bottleneck that impedes its solar-to-hydrogen conversion efficiency. Herein, we demonstrate that a core-shell nanoarray photoanode of NbN -nanorod@Ta N ultrathin layer enhances light harvesting and forms a spatial charge-transfer channel, which leads to the efficient generation and extraction of charge carriers. Consequently, an impressive photocurrent density of 7 mA cm at 1.23 V is obtained with an ultrathin Ta N shell thickness of less than 30 nm, accompanied by excellent stability and a low onset potential (0.46 V ). Mechanistic studies reveal the enhanced performance is attributed to the high-conductivity NbN core, high-crystalline Ta N mono-grain shell, and the intimate Ta-N-Nb interface bonds, which accelerate the charge-separation capability of the core-shell photoanode. This study demonstrates the key roles of nanostructure design in improving the efficiency of PEC devices.
氮化钽(TaN)已成为一种用于光电化学(PEC)水分解的有前景的光阳极材料。然而,低效的电子 - 空穴分离仍然是阻碍其太阳能到氢能转换效率的瓶颈。在此,我们证明了一种NbN - 纳米棒@TaN超薄层的核壳纳米阵列光阳极增强了光捕获并形成了空间电荷转移通道,这导致了电荷载流子的高效产生和提取。因此,在小于30nm的超薄TaN壳厚度下,在1.23V时获得了令人印象深刻的7mA cm的光电流密度,同时具有出色的稳定性和低起始电位(0.46V)。机理研究表明,性能的提高归因于高导电性的NbN核、高结晶度的TaN单晶壳以及紧密的Ta - N - Nb界面键,它们加速了核壳光阳极的电荷分离能力。这项研究证明了纳米结构设计在提高PEC器件效率方面的关键作用。