Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Cancer Res. 2023 Oct 13;83(20):3414-3427. doi: 10.1158/0008-5472.CAN-22-3481.
Multiple myeloma cells undergo metabolic reprogramming in response to the hypoxic and nutrient-deprived bone marrow microenvironment. Primary oncogenes in recurrent translocations might be able to drive metabolic heterogeneity to survive the microenvironment that can present new vulnerabilities for therapeutic targeting. t(4;14) translocation leads to the universal overexpression of histone methyltransferase NSD2 that promotes plasma cell transformation through a global increase in H3K36me2. Here, we identified PKCα as an epigenetic target that contributes to the oncogenic potential of NSD2. RNA sequencing of t(4;14) multiple myeloma cell lines revealed a significant enrichment in the regulation of metabolic processes by PKCα, and the glycolytic gene, hexokinase 2 (HK2), was transcriptionally regulated by PKCα in a PI3K/Akt-dependent manner. Loss of PKCα displaced mitochondria-bound HK2 and reversed sensitivity to the glycolytic inhibitor 3-bromopyruvate. In addition, the perturbation of glycolytic flux led to a metabolic shift to a less energetic state and decreased ATP production. Metabolomics analysis indicated lactate as a differential metabolite associated with PKCα. As a result, PKCα conferred resistance to the immunomodulatory drugs (IMiD) lenalidomide in a cereblon-independent manner and could be phenocopied by either overexpression of HK2 or direct supplementation of lactate. Clinically, t(4;14) patients had elevated plasma lactate levels and did not benefit from lenalidomide-based regimens. Altogether, this study provides insights into the epigenetic-metabolism cross-talk in multiple myeloma and highlights the opportunity for therapeutic intervention that leverages the distinct metabolic program in t(4;14) myeloma.
Aberrant glycolysis driven by NSD2-mediated upregulation of PKCα can be therapeutically exploited using metabolic inhibitors with lactate as a biomarker to identify high-risk patients who exhibit poor response towards IMiD-based regimens.
多发性骨髓瘤细胞在应对缺氧和营养缺乏的骨髓微环境时会发生代谢重编程。复发性易位中的原癌基因可能能够驱动代谢异质性,以在微环境中存活,这可能为治疗靶向提供新的弱点。t(4;14)易位导致组蛋白甲基转移酶 NSD2 的普遍过表达,通过 H3K36me2 的全局增加促进浆细胞瘤转化。在这里,我们确定了 PKCα 作为一个表观遗传靶点,有助于 NSD2 的致癌潜力。t(4;14)多发性骨髓瘤细胞系的 RNA 测序显示,PKCα 对代谢过程的调节有显著富集,糖酵解基因己糖激酶 2 (HK2) 通过 PI3K/Akt 依赖的方式转录调控 PKCα。PKCα 的缺失取代了线粒体结合的 HK2,并逆转了对糖酵解抑制剂 3-溴丙酮酸的敏感性。此外,糖酵解通量的扰动导致代谢状态向能量较低的状态转变,并减少 ATP 产生。代谢组学分析表明乳酸是与 PKCα 相关的差异代谢物。结果,PKCα 以一种依赖于 cereblon 的方式赋予多发性骨髓瘤对免疫调节药物 (IMiD) 来那度胺的耐药性,并且可以通过 HK2 的过表达或直接补充乳酸来模拟。临床上,t(4;14)患者的血浆乳酸水平升高,并且不能从基于来那度胺的方案中获益。总的来说,这项研究提供了多发性骨髓瘤中表观遗传代谢交叉对话的见解,并强调了利用 t(4;14)骨髓瘤中独特的代谢程序进行治疗干预的机会。
由 NSD2 介导的 PKCα 上调驱动的异常糖酵解可以通过使用代谢抑制剂进行治疗性利用,以乳酸作为生物标志物来识别对基于 IMiD 的方案反应不佳的高危患者。