Chen Hao-Ran, Wan Min, Li Zi-Mu, Zhong Wen-He, Ye Si-Yu, Jia Qiang-Qiang, Li Jun-Yi, Chen Li-Zhuang
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China.
Inorg Chem. 2023 Jul 31;62(30):12018-12026. doi: 10.1021/acs.inorgchem.3c01497. Epub 2023 Jul 18.
Molecular ferroelectric materials are widely applied in piezoelectric converters, non-volatile memorizers, and photovoltaic devices due to their advantages of adjustable structure, lightweight, easy processing, and environmental friendliness. However, designing multifunctional molecular ferroelectrics with excellent properties has always been a great challenge. Herein, a multiaxial molecular ferroelectric is successfully designed by modifying the quasi-spherical cation dabco with CuBr to obtain halogenated [Bretdabco]CuBr (Bretdabco = -bromoethyl-'-diazabicyclo [2.2.2]octane), which crystallizes in polar point groups (). Typical ferroelectric behaviors featured by the P-E hysteresis loop and switched ferroelectric domain are exhibited. Notably, the molecular ferroelectric shows a high of 460 K, which is rare in the field and could greatly expand the application range of this material. In addition, the band gap is adjustable through the regulation of halogen. Both the UV absorption spectra and theoretical calculations indicate that the molecular ferroelectrics belong to a direct band gap (2.14 eV) semiconductor. This tunable and narrow band gap semiconductor molecular ferroelectric material with high can be utilized more effectively in the study of optoelectronics and sensors, including piezoelectric energy harvesters. This research may provide a promising approach for the development of multiaxial molecular ferroelectrics with a tiny band gap and high .
分子铁电材料因其结构可调、重量轻、易于加工和环境友好等优点,在压电转换器、非易失性存储器和光伏器件中得到广泛应用。然而,设计具有优异性能的多功能分子铁电体一直是一个巨大的挑战。在此,通过用CuBr修饰准球形阳离子dabco成功设计了一种多轴分子铁电体,得到卤化的[Bretdabco]CuBr(Bretdabco = -溴乙基-' -二氮杂双环[2.2.2]辛烷),其结晶于极性点群()。表现出以P-E滞后回线和开关铁电畴为特征的典型铁电行为。值得注意的是,该分子铁电体具有高达460 K的居里温度,这在该领域中很少见,并且可以大大扩展这种材料的应用范围。此外,通过调节卤素可以调节带隙。紫外吸收光谱和理论计算均表明,该分子铁电体属于直接带隙(2.14 eV)半导体。这种具有高居里温度的可调谐窄带隙半导体分子铁电材料在光电子学和传感器研究中,包括压电能量收集器,可得到更有效的利用。这项研究可能为开发具有微小带隙和高居里温度的多轴分子铁电体提供一种有前景的方法。