Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States.
Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States.
Biochemistry. 2023 Aug 1;62(15):2314-2324. doi: 10.1021/acs.biochem.3c00290. Epub 2023 Jul 18.
The pressure to optimize enzymatic rate accelerations has driven the evolution of the induced-fit mechanism for enzyme catalysts where the binding interactions of nonreacting phosphodianion or adenosyl substrate pieces drive enzyme conformational changes to form protein substrate cages that are activated for catalysis. We report the results of experiments to test the hypothesis that utilization of the binding energy of the adenosine 5'-diphosphate ribose (ADP-ribose) fragment of the NAD cofactor to drive a protein conformational change activates formate dehydrogenase (FDH) for catalysis of hydride transfer from formate to NAD. The ADP-ribose fragment provides a >14 kcal/mol stabilization of the transition state for FDH-catalyzed hydride transfer from formate to NAD. This is larger than the ca. 6 kcal/mol stabilization of the ground-state Michaelis complex between FDH and NAD ( = 0.032 mM). The ADP, AMP, and ribose 5'-phosphate fragments of NAD activate FDH for catalysis of hydride transfer from formate to nicotinamide riboside (NR). At a 1.0 M standard state, these activators stabilize the hydride transfer transition states by ≈5.5 (ADP), 5.5 (AMP), and 4.4 (ribose 5'-phosphate) kcal/mol. We propose that activation by these cofactor fragments is partly or entirely due to the ion-pair interaction between the guanidino side chain cation of R174 and the activator phosphate anion. This substitutes for the interaction between the α-adenosyl pyrophosphate anion of the whole NAD cofactor that holds FDH in the catalytically active closed conformation.
为了优化酶促反应速率的加速,诱导契合机制被广泛应用于酶催化剂中。在这种机制中,非反应性磷酸二阴离子或腺苷基底物片段的结合相互作用驱动酶构象变化,形成蛋白质底物笼,从而被激活进行催化。我们报告了实验结果,这些结果验证了一个假设,即利用 NAD 辅助因子中腺苷 5'-二磷酸核糖(ADP-ribose)片段的结合能来驱动蛋白质构象变化,可以激活甲酸脱氢酶(FDH),从而催化甲酸向 NAD 的氢转移反应。ADP-ribose 片段为 FDH 催化的甲酸向 NAD 的氢转移反应提供了超过 14 kcal/mol 的过渡态稳定性。这比 FDH 和 NAD 之间的基态 Michaelis 复合物的稳定化作用( = 0.032 mM)大约 6 kcal/mol。NAD 的 ADP、AMP 和核糖 5'-磷酸片段激活 FDH,促进甲酸向烟酰胺核糖(NR)的氢转移反应。在 1.0 M 的标准状态下,这些激活剂通过 ≈5.5(ADP)、5.5(AMP)和 4.4(核糖 5'-磷酸)kcal/mol 的方式稳定氢转移过渡态。我们提出,这些辅助因子片段的激活部分或全部归因于 R174 的胍侧链阳离子与激活剂磷酸阴离子之间的离子对相互作用。这种相互作用替代了整个 NAD 辅助因子中α-腺苷基焦磷酸阴离子与 FDH 之间的相互作用,使 FDH 保持在催化活性的闭合构象中。