Di Trapani Francesco, Franosch Thomas, Caraglio Michele
Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
Phys Rev E. 2023 Jun;107(6-1):064123. doi: 10.1103/PhysRevE.107.064123.
We solve the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle exploring a circular region with an absorbing boundary. Using the passive Brownian particle as basis states and dealing with the activity as a perturbation, we provide a matrix representation of the Fokker-Planck operator and we express the propagator in terms of the perturbed eigenvalues and eigenfunctions. Alternatively, we show that the propagator can be expressed as a combination of the equilibrium eigenstates with weights depending only on time and on the initial conditions, and obeying exact iterative relations. Our solution allows also obtaining the survival probability and the first-passage time distribution. These latter quantities exhibit peculiarities induced by the nonequilibrium character of the dynamics; in particular, they display a strong dependence on the activity of the particle and, to a less extent, also on its rotational diffusivity.
我们求解了二维有源布朗粒子在具有吸收边界的圆形区域中探索时的含时福克 - 普朗克方程。以无源布朗粒子作为基态,并将活性视为微扰,我们给出了福克 - 普朗克算子的矩阵表示,并根据微扰后的本征值和本征函数来表示传播子。另外,我们表明传播子可以表示为平衡本征态的组合,其权重仅取决于时间和初始条件,并且服从精确的迭代关系。我们的解还能得到生存概率和首次通过时间分布。后两个量表现出由动力学的非平衡特性所引起的特殊性;特别是,它们强烈依赖于粒子的活性,并且在较小程度上也依赖于其旋转扩散率。