College of Horticulture, Qingdao Agricultural University, Qingdao, China.
College of Life Science, Qingdao Agricultural University, Qingdao, China.
Plant Biotechnol J. 2023 Nov;21(11):2273-2290. doi: 10.1111/pbi.14129. Epub 2023 Jul 19.
Large amounts of potash fertilizer are often applied to apple (Malus domestica) orchards to enhance fruit quality and yields, but this treatment aggravates KCl-based salinity stress. Melatonin (MT) is involved in a variety of abiotic stress responses in plants. However, its role in KCl stress tolerance is still unknown. In the present study, we determined that an appropriate concentration (100 μm) of MT significantly alleviated KCl stress in Malus hupehensis by enhancing K efflux out of cells and compartmentalizing K in vacuoles. Transcriptome deep-sequencing analysis identified the core transcription factor gene MdWRKY53, whose expression responded to both KCl and MT treatment. Overexpressing MdWRKY53 enhanced KCl tolerance in transgenic apple plants by increasing K efflux and K compartmentalization. Subsequently, we characterized the transporter genes MdGORK1 and MdNHX2 as downstream targets of MdWRKY53 by ChIP-seq. MdGORK1 localized to the plasma membrane and enhanced K efflux to increase KCl tolerance in transgenic apple plants. Moreover, overexpressing MdNHX2 enhanced the KCl tolerance of transgenic apple plants/callus by compartmentalizing K into the vacuole. RT-qPCR and LUC activity analyses indicated that MdWRKY53 binds to the promoters of MdGORK1 and MdNHX2 and induces their transcription. Taken together, our findings reveal that the MT-WRKY53-GORK1/NHX2-K module regulates K homeostasis to enhance KCl stress tolerance in apple. These findings shed light on the molecular mechanism of apple response to KCl-based salinity stress and lay the foundation for the practical application of MT in salt stress.
大量的钾肥通常应用于苹果(Malus domestica)果园,以提高果实品质和产量,但这种处理会加剧基于 KCl 的盐胁迫。褪黑素(MT)参与植物的多种非生物胁迫反应。然而,其在 KCl 胁迫耐受中的作用尚不清楚。在本研究中,我们确定了适当浓度(100 μM)的 MT 通过增强细胞内 K 的外排和将 K 分隔到液泡中,显著缓解了中华猕猴桃对 KCl 胁迫的反应。转录组深度测序分析鉴定了核心转录因子基因 MdWRKY53,其表达对 KCl 和 MT 处理均有响应。过表达 MdWRKY53 通过增加 K 的外排和分隔来增强 KCl 耐性。随后,我们通过 ChIP-seq 鉴定了转运蛋白基因 MdGORK1 和 MdNHX2 作为 MdWRKY53 的下游靶标。MdGORK1 定位于质膜,增强 K 的外排以提高转基因苹果植物的 KCl 耐性。此外,过表达 MdNHX2 通过将 K 分隔到液泡中,增强了转基因苹果植物/愈伤组织的 KCl 耐性。RT-qPCR 和 LUC 活性分析表明,MdWRKY53 结合到 MdGORK1 和 MdNHX2 的启动子上,并诱导它们的转录。总之,我们的研究结果揭示了 MT-WRKY53-GORK1/NHX2-K 模块调节 K 稳态以增强苹果对 KCl 胁迫的耐受性。这些发现为苹果对基于 KCl 的盐胁迫的响应的分子机制提供了新的见解,并为 MT 在盐胁迫中的实际应用奠定了基础。