Suppr超能文献

协同空间限制与双金属催化以促进锂硫电池中的硫动力学

Synergizing Spatial Confinement and Dual-Metal Catalysis to Boost Sulfur Kinetics in Lithium-Sulfur Batteries.

作者信息

Ren Xiaoyan, Wang Qin, Pu Yulai, Sun Qi, Sun Wenbo, Lu Lehui

机构信息

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.

School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

出版信息

Adv Mater. 2023 Nov;35(44):e2304120. doi: 10.1002/adma.202304120. Epub 2023 Sep 22.

Abstract

Sluggish kinetics and parasitic shuttling reactions severely impede lithium-sulfur (Li-S) battery operation; resolving these issues can enhance the capacity retention and cyclability of Li-S cells. Therefore, an effective strategy featuring core-shell-structured Co/Ni bimetal-doped metal-organic framework (MOF)/sulfur nanoparticles is reported herein for addressing these problems; this approach offers unprecedented spatial confinement and abundant catalytic sites by encapsulating sulfur within an ordered architecture. The protective shells exhibit long-term stability, ion screening, high lithium-polysulfide adsorption capability, and decent multistep catalytic conversion. Additionally, the delocalized electrons of the MOF endow the cathodes with superior electron/lithium-ion transfer ability. Via multiple physicochemical and theoretical analysis, the resulting synergistic interactions are proved to significantly promote interfacial charge-transfer kinetics, facilitate sulfur conversion dynamics, and inhibit shuttling. The assembled Li-S batteries deliver a stable, highly reversible capacity with marginal decay (0.075% per cycle) for 400 cycles at 0.2 C, a pouch-cell areal capacity of 3.8 mAh cm for 200 cycles under a high sulfur loading, as well as remarkably improved pouch-cell performance.

摘要

缓慢的动力学和寄生穿梭反应严重阻碍了锂硫(Li-S)电池的运行;解决这些问题可以提高Li-S电池的容量保持率和循环稳定性。因此,本文报道了一种有效的策略,即采用核壳结构的钴/镍双金属掺杂金属有机框架(MOF)/硫纳米颗粒来解决这些问题;这种方法通过将硫封装在有序结构中,提供了前所未有的空间限制和丰富的催化位点。保护壳具有长期稳定性、离子筛选、高锂多硫化物吸附能力和良好的多步催化转化能力。此外,MOF的离域电子赋予阴极优异的电子/锂离子转移能力。通过多种物理化学和理论分析,证明了由此产生的协同相互作用显著促进了界面电荷转移动力学,促进了硫转化动力学,并抑制了穿梭效应。组装的Li-S电池在0.2 C下400次循环中具有稳定、高度可逆的容量,容量衰减极小(每循环0.075%),在高硫负载下200次循环的软包电池面积容量为3.8 mAh cm,以及显著改善的软包电池性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验