BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA.
Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Nat Commun. 2023 Jul 19;14(1):4349. doi: 10.1038/s41467-023-40014-5.
Proanthocyanidins (PAs), flavonoid polymers involved in plant defense, are also beneficial to human health and ruminant nutrition. To date, there is little evidence for accumulation of PAs in maize (Zea mays), although maize makes anthocyanins and possesses the key enzyme of the PA pathway, anthocyanidin reductase (ANR). Here, we explore whether there is a functional PA biosynthesis pathway in maize using a combination of analytical chemistry and genetic approaches. The endogenous PA biosynthetic machinery in maize preferentially produces the unusual PA precursor (+)-epicatechin, as well as 4β-(S-cysteinyl)-catechin, as potential PA starter and extension units. Uncommon procyanidin dimers with (+)-epicatechin as starter unit are also found. Expression of soybean (Glycine max) anthocyanidin reductase 1 (ANR1) in maize seeds increases the levels of 4β-(S-cysteinyl)-epicatechin and procyanidin dimers mainly using (-)-epicatechin as starter units. Introducing a Sorghum bicolor transcription factor (SbTT2) specifically regulating PA biosynthesis into a maize inbred deficient in anthocyanin biosynthesis activates both anthocyanin and PA biosynthesis pathways, suggesting conservation of the PA regulatory machinery across species. Our data support the divergence of PA biosynthesis across plant species and offer perspectives for future agricultrural applications in maize.
原花青素(PAs)是参与植物防御的类黄酮聚合物,也有益于人类健康和反刍动物营养。迄今为止,尽管玉米产生花色素苷并具有 PA 途径的关键酶——花青素还原酶(ANR),但几乎没有证据表明 PA 在玉米中积累。在这里,我们使用分析化学和遗传方法相结合,探索玉米中是否存在功能性 PA 生物合成途径。玉米中内源性 PA 生物合成机制优先产生不寻常的 PA 前体(+)-表儿茶素,以及 4β-(S-半胱氨酸)-儿茶素,作为潜在的 PA 起始和延伸单元。还发现了罕见的以(+)-表儿茶素为起始单元的原花青素二聚体。在玉米种子中表达大豆(Glycine max)花青素还原酶 1(ANR1)会增加 4β-(S-半胱氨酸)-表儿茶素和原花青素二聚体的水平,主要使用(-)-表儿茶素作为起始单元。将专门调节 PA 生物合成的高粱转录因子(SbTT2)引入缺乏花青素生物合成的玉米自交系中,可同时激活花青素和 PA 生物合成途径,这表明 PA 调控机制在不同物种中是保守的。我们的数据支持了植物物种之间 PA 生物合成的差异,并为未来在玉米中的农业应用提供了新的视角。