Suppr超能文献

相似文献

1
Evolutionary trajectory of transcription factors and selection of targets for metabolic engineering.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230367. doi: 10.1098/rstb.2023.0367. Epub 2024 Sep 30.
2
Transcription factors for predictive plant metabolic engineering: are we there yet?
Curr Opin Biotechnol. 2008 Apr;19(2):138-44. doi: 10.1016/j.copbio.2008.02.002.
3
Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.
Biochim Biophys Acta Gene Regul Mech. 2017 Jan;1860(1):3-20. doi: 10.1016/j.bbagrm.2016.08.005. Epub 2016 Aug 10.
4
Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family.
Int J Mol Sci. 2024 May 14;25(10):5369. doi: 10.3390/ijms25105369.
5
Identification and evolutionary characterization of salt-responsive transcription factors in the succulent halophyte Suaeda fruticosa.
PLoS One. 2019 Sep 23;14(9):e0222940. doi: 10.1371/journal.pone.0222940. eCollection 2019.
6
Applications of ancestral sequence reconstruction for understanding the evolution of plant specialized metabolism.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230348. doi: 10.1098/rstb.2023.0348. Epub 2024 Sep 30.
7
Transcription factors as tools for metabolic engineering in plants.
Curr Opin Plant Biol. 2004 Apr;7(2):202-9. doi: 10.1016/j.pbi.2004.01.013.
8
[Research progress in genetic engineering of plant secondary metabolism].
Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2005 Feb;31(1):11-8.
9
The plant heat stress transcription factor (Hsf) family: structure, function and evolution.
Biochim Biophys Acta. 2012 Feb;1819(2):104-19. doi: 10.1016/j.bbagrm.2011.10.002. Epub 2011 Oct 17.
10
Contrasted evolutionary trajectories of plant transcription factors.
Curr Opin Plant Biol. 2020 Apr;54:101-107. doi: 10.1016/j.pbi.2020.03.002. Epub 2020 May 15.

引用本文的文献

1
Decoding complexity: tackling the challenge of how many transcription factors regulate a plant gene.
Transcription. 2025 Apr-Jun;16(2-3):261-283. doi: 10.1080/21541264.2025.2521767. Epub 2025 Jun 25.
2
Current and future perspectives for enhancing our understanding of the evolution of plant metabolism.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20240253. doi: 10.1098/rstb.2024.0253. Epub 2024 Sep 30.

本文引用的文献

1
Should I stay or should I go? Trafficking of plant extra-nuclear transcription factors.
Plant Cell. 2024 May 1;36(5):1524-1539. doi: 10.1093/plcell/koad277.
3
The dual role of GoPGF reveals that the pigment glands are synthetic sites of gossypol in aerial parts of cotton.
New Phytol. 2024 Jan;241(1):314-328. doi: 10.1111/nph.19331. Epub 2023 Oct 22.
4
An unconventional proanthocyanidin pathway in maize.
Nat Commun. 2023 Jul 19;14(1):4349. doi: 10.1038/s41467-023-40014-5.
8
ODORANT1 targets multiple metabolic networks in petunia flowers.
Plant J. 2022 Mar;109(5):1134-1151. doi: 10.1111/tpj.15618. Epub 2021 Dec 27.
10
Anthocyanin synthesis potential in betalain-producing Caryophyllales plants.
J Plant Res. 2021 Nov;134(6):1335-1349. doi: 10.1007/s10265-021-01341-0. Epub 2021 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验