Suppr超能文献

从临床二代测序中提取计算药物基因型

Computational pharmacogenotype extraction from clinical next-generation sequencing.

作者信息

Shugg Tyler, Ly Reynold C, Osei Wilberforce, Rowe Elizabeth J, Granfield Caitlin A, Lynnes Ty C, Medeiros Elizabeth B, Hodge Jennelle C, Breman Amy M, Schneider Bryan P, Sahinalp S Cenk, Numanagić Ibrahim, Salisbury Benjamin A, Bray Steven M, Ratcliff Ryan, Skaar Todd C

机构信息

Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.

Division of Diagnostic Genetics and Genomics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.

出版信息

Front Oncol. 2023 Jul 4;13:1199741. doi: 10.3389/fonc.2023.1199741. eCollection 2023.

Abstract

BACKGROUND

Next-generation sequencing (NGS), including whole genome sequencing (WGS) and whole exome sequencing (WES), is increasingly being used for clinic care. While NGS data have the potential to be repurposed to support clinical pharmacogenomics (PGx), current computational approaches have not been widely validated using clinical data. In this study, we assessed the accuracy of the Aldy computational method to extract PGx genotypes from WGS and WES data for 14 and 13 major pharmacogenes, respectively.

METHODS

Germline DNA was isolated from whole blood samples collected for 264 patients seen at our institutional molecular solid tumor board. DNA was used for panel-based genotyping within our institutional Clinical Laboratory Improvement Amendments- (CLIA-) certified PGx laboratory. DNA was also sent to other CLIA-certified commercial laboratories for clinical WGS or WES. Aldy v3.3 and v4.4 were used to extract PGx genotypes from these NGS data, and results were compared to the panel-based genotyping reference standard that contained 45 star allele-defining variants within , , , , , , , , , , , , , and .

RESULTS

Mean WGS read depth was >30x for all variant regions except for (average read depth was 29 reads), and mean WES read depth was >30x for all variant regions. For 94 patients with WGS, Aldy v3.3 diplotype calls were concordant with those from the genotyping reference standard in 99.5% of cases when excluding diplotypes with additional major star alleles not tested by targeted genotyping, ambiguous phasing, and hybrid alleles. Aldy v3.3 identified 15 additional clinically actionable star alleles not covered by genotyping within , , , , and . Within the WGS cohort, Aldy v4.4 diplotype calls were concordant with those from genotyping in 99.7% of cases. When excluding patients with copy number variation, all Aldy v4.4 diplotype calls except for one diplotype call were concordant with genotyping for 161 patients in the WES cohort.

CONCLUSION

Aldy v3.3 and v4.4 called diplotypes for major pharmacogenes from clinical WES and WGS data with >99% accuracy. These findings support the use of Aldy to repurpose clinical NGS data to inform clinical PGx.

摘要

背景

包括全基因组测序(WGS)和全外显子组测序(WES)在内的下一代测序(NGS)越来越多地用于临床护理。虽然NGS数据有潜力被重新利用以支持临床药物基因组学(PGx),但目前的计算方法尚未使用临床数据进行广泛验证。在本研究中,我们分别评估了Aldy计算方法从WGS和WES数据中提取14个和13个主要药物基因的PGx基因型的准确性。

方法

从在我们机构分子实体瘤委员会就诊的264例患者采集的全血样本中分离出种系DNA。DNA用于我们机构临床实验室改进修正案(CLIA)认证的PGx实验室中的基于芯片的基因分型。DNA也被送往其他CLIA认证的商业实验室进行临床WGS或WES。使用Aldy v3.3和v4.4从这些NGS数据中提取PGx基因型,并将结果与基于芯片的基因分型参考标准进行比较,该标准包含位于、、、、、、、、、、、、、和中的45个星等位基因定义变体。

结果

除(平均读取深度为29次读取)外,所有变异区域的平均WGS读取深度均>30x,所有变异区域的平均WES读取深度均>30x。对于94例进行WGS的患者,在排除具有靶向基因分型未检测到的额外主要星等位基因、相位不明确和杂合等位基因的双倍型后,Aldy v3.3的双倍型调用在99.5%的病例中与基因分型参考标准一致。Aldy v3.3在、、、和中鉴定出15个基因分型未涵盖的额外临床可操作星等位基因。在WGS队列中,Aldy v4.4的双倍型调用在99.7%的病例中与基因分型一致。在排除具有拷贝数变异的患者后,对于WES队列中的161例患者,除一个双倍型调用外,所有Aldy v4.4的双倍型调用均与基因分型一致。

结论

Aldy v3.3和v4.4从临床WES和WGS数据中调用主要药物基因的双倍型,准确率>99%。这些发现支持使用Aldy重新利用临床NGS数据以指导临床PGx。

相似文献

引用本文的文献

本文引用的文献

9
Automated Pharmacogenomic Reports for Clinical Genome Sequencing.临床基因组测序的自动化药物基因组报告
J Mol Diagn. 2022 Mar;24(3):205-218. doi: 10.1016/j.jmoldx.2021.12.001. Epub 2022 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验