Beninde Joscha, Wittische Julian, Frantz Alain C
LA Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA.
IUCN WCPA Connectivity Conservation Specialist Group, Gland, Switzerland.
Mol Ecol Resour. 2024 Jan;24(1):e13831. doi: 10.1111/1755-0998.13831. Epub 2023 Jul 20.
Estimates of gene flow resulting from landscape resistance inferences frequently inform conservation management decision-making processes. Therefore, results must be robust across approaches and reflect real-world gene flow instead of methodological artefacts. Here, we tested the impact of 32 individual-based genetic distance metrics on the robustness and accuracy of landscape resistance modelling results. We analysed three empirical microsatellite datasets and 36 simulated datasets that varied in landscape resistance and genetic spatial autocorrelation. We used ResistanceGA to generate optimised multi-feature resistance surfaces for each of these datasets using 32 different genetic distance metrics. Results of the empirical dataset demonstrated that the choice of genetic distance metric can have strong impacts on inferred optimised resistance surfaces. Simulations showed accurate parametrisation of resistance surfaces across most genetic distance metrics only when a small number of environmental features was impacting gene flow. Landscape scenarios with many features impacting gene flow led to a generally poor recovery of true resistance surfaces. Simulation results also emphasise that choosing a genetic distance metric should not be based on marginal R -based model fit. Until more robust methods are available, resistance surfaces can be optimised with different genetic distance metrics and the convergence of results needs to be assessed via pairwise matrix correlations. Based on the results presented here, high correlation coefficients across different genetic distance categories likely indicate accurate inference of true landscape resistance. Most importantly, empirical results should be interpreted with great caution, especially when they appear counter-intuitive in light of the ecology of a species.
基于景观抗性推断得出的基因流估计值常常为保护管理决策过程提供依据。因此,结果必须在各种方法中都稳健可靠,并反映现实世界中的基因流,而非方法导致的假象。在此,我们测试了32种基于个体的遗传距离度量对景观抗性建模结果的稳健性和准确性的影响。我们分析了三个经验微卫星数据集以及36个在景观抗性和遗传空间自相关性方面存在差异的模拟数据集。我们使用ResistanceGA,通过32种不同的遗传距离度量为每个数据集生成优化的多特征抗性表面。经验数据集的结果表明,遗传距离度量的选择会对推断出的优化抗性表面产生强烈影响。模拟显示,只有当少量环境特征影响基因流时,大多数遗传距离度量才能准确地对抗性表面进行参数化。具有许多影响基因流特征的景观情景通常会导致真实抗性表面的恢复效果较差。模拟结果还强调,选择遗传距离度量不应基于基于边际R的模型拟合。在有更稳健的方法可用之前,可以用不同的遗传距离度量来优化抗性表面,并且需要通过成对矩阵相关性来评估结果的收敛性。基于此处给出 的结果,不同遗传距离类别之间的高相关系数可能表明对真实景观抗性的准确推断。最重要的是,对经验结果的解释应格外谨慎,尤其是当它们根据物种的生态学显得违反直觉时。