Pu Xiankun, Wang Xin, Shi Lei, Ma Yiming, Wei Chongfeng, Gao Xinjian, Gao Jun
Opt Express. 2023 Jul 17;31(15):24633-24651. doi: 10.1364/OE.495177.
Traditional optical imaging relies on light intensity information from light reflected or transmitted by an object, while polarization imaging utilizes polarization information of light. Camera array imaging is a potent computational imaging technique that enables computational imaging at any depth. However, conventional imaging methods mainly focus on removing occlusions in the foreground and targeting, with limited attention to imaging and analyzing polarization characteristics at specific depths. Conventional camera arrays cannot be used for polarization layered computational imaging. Thus, to study polarization layered imaging at various depths, we devised a flexible polarization camera array system and proposed a depth-parallax relationship model to achieve computational imaging of polarization arrays and polarization information reconstruction under varying conditions and depths. A series of experiments were conducted under diverse occlusion environments. We analyzed the distinctive characteristics of the imaging results obtained from the polarization array, employing a range of array distribution methods, materials, occlusion density, and depths. Our research successfully achieved computational imaging that incorporates a layered perception of objects. Finally, we evaluated the object region's polarization information using the gray level co-occurrence matrix feature method.
传统光学成像依赖于物体反射或透射光的光强信息,而偏振成像利用光的偏振信息。相机阵列成像是一种强大的计算成像技术,能够在任何深度进行计算成像。然而,传统成像方法主要集中在去除前景中的遮挡物和目标定位上,对特定深度的偏振特性成像和分析关注有限。传统相机阵列不能用于偏振分层计算成像。因此,为了研究不同深度的偏振分层成像,我们设计了一种灵活的偏振相机阵列系统,并提出了一种深度视差关系模型,以实现偏振阵列的计算成像以及在不同条件和深度下的偏振信息重建。在多种遮挡环境下进行了一系列实验。我们采用了一系列阵列分布方法、材料、遮挡密度和深度,分析了从偏振阵列获得的成像结果的独特特征。我们的研究成功实现了包含物体分层感知的计算成像。最后,我们使用灰度共生矩阵特征方法评估了物体区域的偏振信息。