Thom Alexander J R, Turner Gemma F, Davis Zachary H, Ward Martin R, Pakamorė Ignas, Hobday Claire L, Allan David R, Warren Mark R, Leung Wai L W, Oswald Iain D H, Morris Russell E, Moggach Stephen A, Ashbrook Sharon E, Forgan Ross S
WestCHEM School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
School of Molecular Sciences, The University of Western Australia 35 Stirling Highway, Crawley Perth Western Australia 6009 Australia
Chem Sci. 2023 Jun 19;14(28):7716-7724. doi: 10.1039/d3sc00904a. eCollection 2023 Jul 19.
Postsynthetic modification of metal-organic frameworks (MOFs) has proven to be a hugely powerful tool to tune physical properties and introduce functionality, by exploiting reactive sites on both the MOF linkers and their inorganic secondary building units (SBUs), and so has facilitated a wide range of applications. Studies into the reactivity of MOF SBUs have focussed solely on removal of neutral coordinating solvents, or direct exchange of linkers such as carboxylates, despite the prevalence of ancillary charge-balancing oxide and hydroxide ligands found in many SBUs. Herein, we show that the μ-OH ligands in the MIL-53 topology Sc MOF, GUF-1, are labile, and can be substituted for μ-OCH units through reaction with pore-bound methanol molecules in a very rare example of pressure-induced postsynthetic modification. Using comprehensive solid-state NMR spectroscopic analysis, we show an order of magnitude increase in this cluster anion substitution process after exposing bulk samples suspended in methanol to a pressure of 0.8 GPa in a large volume press. Additionally, single crystals compressed in diamond anvil cells with methanol as the pressure-transmitting medium have enabled full structural characterisation of the process across a range of pressures, leading to a quantitative single-crystal to single-crystal conversion at 4.98 GPa. This unexpected SBU reactivity - in this case chemisorption of methanol - has implications across a range of MOF chemistry, from activation of small molecules for heterogeneous catalysis to chemical stability, and we expect cluster anion substitution to be developed into a highly convenient novel method for modifying the internal pore surface and chemistry of a range of porous materials.
金属有机框架材料(MOFs)的合成后修饰已被证明是一种非常强大的工具,可通过利用MOF连接体及其无机二级构筑单元(SBUs)上的反应位点来调节物理性质并引入功能,从而促进了广泛的应用。尽管在许多SBUs中普遍存在辅助电荷平衡的氧化物和氢氧化物配体,但对MOF SBUs反应性的研究仅集中在中性配位溶剂的去除或连接体(如羧酸盐)的直接交换上。在此,我们表明MIL-53拓扑结构的Sc MOF即GUF-1中的μ-OH配体是不稳定的,并且在一个非常罕见的压力诱导合成后修饰的例子中,可以通过与孔内甲醇分子反应被μ-OCH单元取代。通过全面的固态核磁共振光谱分析,我们发现在大体积压机中将悬浮在甲醇中的块状样品暴露于0.8 GPa的压力后,这种簇阴离子取代过程增加了一个数量级。此外,以甲醇作为压力传递介质在金刚石压腔中压缩的单晶能够在一系列压力下对该过程进行完整的结构表征,从而在4.98 GPa下实现了定量的单晶到单晶的转变。这种意想不到的SBU反应性——在这种情况下是甲醇的化学吸附——在一系列MOF化学领域都有影响,从用于多相催化的小分子活化到化学稳定性,并且我们预计簇阴离子取代将发展成为一种非常方便新颖的方法,用于修饰一系列多孔材料的内部孔表面和化学性质。