Suppr超能文献

金属有机骨架中的孔空间分割。

Pore Space Partition in Metal-Organic Frameworks.

机构信息

Department of Chemistry, University of California , Riverside, California 92521, United States.

Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an, Shaanxi 710062, China.

出版信息

Acc Chem Res. 2017 Feb 21;50(2):407-417. doi: 10.1021/acs.accounts.6b00526. Epub 2017 Jan 20.

Abstract

Metal-organic framework (MOF) materials have emerged as one of the favorite crystalline porous materials (CPM) because of their compositional and geometric tunability and many possible applications. In efforts to develop better MOFs for gas storage and separation, a number of strategies including creation of open metal sites and implantation of Lewis base sites have been used to tune host-guest interactions. In addition to these chemical factors, the geometric features such as pore size and shape, surface area, and pore volume also play important roles in sorption energetics and uptake capacity. For efficient capture of small gas molecules such as carbon dioxide under ambient conditions, large surface area or high pore volume are often not needed. Instead, maximizing host-guest interactions or the density of binding sites by encaging gas molecules in snug pockets of pore space can be a fruitful approach. To put this concept into practice, the pore space partition (PSP) concept has been proposed and has achieved a great experimental success. In this account, we will highlight many efforts to implement PSP in MOFs and impact of PSP on gas uptake performance. In the synthetic design of PSP, it is helpful to distinguish between factors that contribute to the framework formation and factors that serve the purpose of PSP. Because of the need for complementary structural roles, the synthesis of MOFs with PSP often involves multicomponent systems including mixed ligands, mixed inorganic nodes, or both. It is possible to accomplish both framework formation and PSP with a single type of polyfunctional ligands that use some functional groups (called framework-forming group) for framework formation and the remaining functional groups (called pore-partition group) for PSP. Alternatively, framework formation and PSP can be shouldered by different chemical species. For example, in a mixed-ligand system, one ligand (called framework-forming agent) can play the role of the framework formation while the other type of ligand (called pore-partition agent) can assume the role of PSP. PSP is sensitive to the types of inorganic secondary building units (SBUs). The coexistence of SBUs complementary in charge, connectivity, and so on can promote PSP. The use of heterometallic systems can promote the diversity of SBUs coexistent under a given condition. Heterometallic system with metal ions of different oxidation states also provides the charge tunability of SBUs and the overall framework, providing an additional level of control in self-assembly and ultimately in the materials' properties. Of particular interest is the PSP in MIL-88 type (acs-type topology) structure, which has led to a huge family of CPMs (called pacs CPMs, pacs = partitioned acs) exhibiting low isosteric heat of adsorption and yet superior CO uptake capacity.

摘要

金属-有机骨架(MOF)材料因其组成和几何可调性以及许多可能的应用而成为最受欢迎的结晶多孔材料(CPM)之一。为了开发用于气体存储和分离的更好的 MOF,已经使用了许多策略,包括创建开放金属位点和植入路易斯碱位点,以调整主客体相互作用。除了这些化学因素外,孔径和形状、表面积和孔体积等几何特征在吸附能和吸收容量方面也起着重要作用。为了在环境条件下有效捕获诸如二氧化碳等小分子气体,通常不需要大的表面积或高的孔体积。相反,通过将气体分子封装在孔空间的紧凑口袋中,可以最大限度地提高主客体相互作用或结合位点的密度,这是一种很有成效的方法。为了将这一概念付诸实践,提出了孔空间划分(PSP)的概念,并取得了巨大的实验成功。在本报告中,我们将重点介绍在 MOF 中实施 PSP 的许多努力以及 PSP 对气体吸收性能的影响。在 PSP 的合成设计中,区分有助于骨架形成的因素和有助于 PSP 的因素是很有帮助的。由于需要互补的结构作用,具有 PSP 的 MOF 的合成通常涉及多组分系统,包括混合配体、混合无机节点或两者。使用某些官能团(称为骨架形成基团)用于骨架形成,而剩余的官能团(称为孔分区基团)用于 PSP,可以用单种多官能配体来完成骨架形成和 PSP。或者,骨架形成和 PSP 可以由不同的化学物质承担。例如,在混合配体系统中,一种配体(称为骨架形成剂)可以起到骨架形成的作用,而另一种类型的配体(称为孔分区剂)可以起到 PSP 的作用。PSP 对无机次级建筑单元(SBU)的类型敏感。电荷、连接性等互补的 SBU 共存可以促进 PSP。使用杂金属体系可以促进给定条件下共存的 SBU 的多样性。具有不同氧化态金属离子的杂金属体系还提供了 SBU 和整体骨架的电荷可调性,为自组装提供了额外的控制水平,并最终为材料性能提供了额外的控制水平。特别有趣的是 MIL-88 型(acs 拓扑)结构中的 PSP,它导致了一大类 CPM(称为 pacs CPM,pacs = 分区 acs)的出现,这些 CPM 具有较低的等温热吸附能,但具有更高的 CO 吸收能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验