Thi Minh Nghia Nguyen, Begum Afshan, Zhang Jun, Leira Petter, Todarwal Yogesh, Linares Mathieu, Norman Patrick, Derbyshire Dean, von Castelmur Eleonore, Lindgren Mikael, Hammarström Per, König Carolin
Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3A, 30167 Hannover, Germany.
Division of Chemistry Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden.
J Phys Chem B. 2023 Aug 3;127(30):6628-6635. doi: 10.1021/acs.jpcb.3c02147. Epub 2023 Jul 21.
Misfolding and aggregation of transthyretin (TTR) cause several amyloid diseases. Besides being an amyloidogenic protein, TTR has an affinity for bicyclic small-molecule ligands in its thyroxine (T4) binding site. One class of TTR ligands are trans-stilbenes. The trans-stilbene scaffold is also widely applied for amyloid fibril-specific ligands used as fluorescence probes and as positron emission tomography tracers for amyloid detection and diagnosis of amyloidosis. We have shown that native tetrameric TTR binds to amyloid ligands based on the trans-stilbene scaffold providing a platform for the determination of high-resolution structures of these important molecules bound to protein. In this study, we provide spectroscopic evidence of binding and X-ray crystallographic structure data on tetrameric TTR complex with the fluorescent salicylic acid-based pyrene amyloid ligand (Py1SA), an analogue of the Congo red analogue X-34. The ambiguous electron density from the X-ray diffraction, however, did not permit Py1SA placement with enough confidence likely due to partial ligand occupancy. Instead, the preferred orientation of the Py1SA ligand in the binding pocket was determined by molecular dynamics and umbrella sampling approaches. We find a distinct preference for the binding modes with the salicylic acid group pointing into the pocket and the pyrene moiety outward to the opening of the T4 binding site. Our work provides insight into TTR binding mode preference for trans-stilbene salicylic acid derivatives as well as a framework for determining structures of TTR-ligand complexes.
转甲状腺素蛋白(TTR)的错误折叠和聚集会引发多种淀粉样疾病。除了作为一种淀粉样蛋白生成蛋白外,TTR在其甲状腺素(T4)结合位点对双环小分子配体具有亲和力。一类TTR配体是反式芪类化合物。反式芪支架还广泛应用于用作荧光探针的淀粉样纤维特异性配体以及用作淀粉样变性检测和诊断的正电子发射断层扫描示踪剂。我们已经表明,天然四聚体TTR会与基于反式芪支架的淀粉样配体结合,为确定这些与蛋白质结合的重要分子的高分辨率结构提供了一个平台。在本研究中,我们提供了四聚体TTR与荧光水杨酸基芘淀粉样配体(Py1SA,刚果红类似物X-34的类似物)复合物结合的光谱证据和X射线晶体学结构数据。然而,由于部分配体占据,X射线衍射产生的模糊电子密度不允许以足够的置信度放置Py1SA。相反,通过分子动力学和伞形抽样方法确定了Py1SA配体在结合口袋中的优选取向。我们发现,水杨酸基团指向口袋内部而芘部分向外指向T4结合位点开口的结合模式具有明显的偏好。我们的工作为TTR对反式芪水杨酸衍生物的结合模式偏好提供了见解,并为确定TTR-配体复合物的结构提供了一个框架。