Suppr超能文献

液滴动力学在剪切气流中接触线脱钉中的作用

Role of Droplet Dynamics on Contact Line Depinning in Shearing Gas Flow.

作者信息

Mortazavi Mehdi, Jung Sung Yong

机构信息

Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, Massachusetts 01609, United States.

Department of Mechanical Engineering, Western New England University, 1215 Wilbraham Rd, Springfield, Massachusetts 01119, United States.

出版信息

Langmuir. 2023 Aug 1;39(30):10301-10311. doi: 10.1021/acs.langmuir.3c00065. Epub 2023 Jul 21.

Abstract

Sessile droplets exposed to shearing gas flows resist depinning owing to surface tension and contact angle hysteresis. It is known that contact line depinning occurs when the shearing gas flow is large enough to deform the droplet beyond its contact angle hysteresis. This work explores the contact line depinning process by visualizing growing droplets on a porous layer in laminar shear gas flows. High-speed imaging of droplets revealed an oscillatory motion in droplets, which is speculated to originate from an interaction between the drag force and surface tension effects. This oscillatory motion creates an inertial force within the droplet which combines with the drag force when droplet acceleration is in the stream-wise direction. The combined effect competes against the droplet adhesion force, setting the depinning criteria. Analyzing droplet images revealed that droplet local velocity and acceleration (i.e., sessile droplet dynamics prior to detachment from the substrate) increase with the superficial gas velocity. At the same time, the contact line depinning occurs at a smaller droplet size for higher superficial gas velocities. This results in a "hill-like" variation of the inertial force as a function of the convective Weber number, We, causing a local maximum in the inertial force data (We scales the inertia effects of the shear flow to surface tension effects). For the experimental condition tested in the current study, the inertial force created in the droplet could reach up to half of the adhesion force, making the drag force only responsible for the other half to depin the droplet contact line. Even at low superficial gas velocities, which featured lower droplet oscillations, the inertial force created in the droplet was considerable with respect to the adhesion force, reaching around one-third of the adhesion force.

摘要

暴露于剪切气流中的 sessile 液滴由于表面张力和接触角滞后而抵抗脱钉。已知当剪切气流足够大,使液滴变形超过其接触角滞后时,接触线会发生脱钉。这项工作通过可视化层流剪切气流中多孔层上生长的液滴来探索接触线脱钉过程。液滴的高速成像显示液滴中存在振荡运动,据推测这源于阻力和表面张力效应之间的相互作用。这种振荡运动在液滴内产生惯性力,当液滴加速度沿流向方向时,该惯性力与阻力相结合。综合效应与液滴附着力竞争,设定了脱钉标准。分析液滴图像发现,液滴局部速度和加速度(即从基底分离前的 sessile 液滴动力学)随表观气体速度增加。同时,对于较高的表观气体速度,接触线脱钉发生在较小的液滴尺寸处。这导致惯性力随对流韦伯数 We 呈现“山丘状”变化,使惯性力数据出现局部最大值(We 将剪切流的惯性效应与表面张力效应进行了缩放)。对于当前研究中测试的实验条件,液滴中产生的惯性力可达附着力的一半,使得阻力仅负责另一半以使液滴接触线脱钉。即使在表观气体速度较低、液滴振荡较小的情况下,液滴中产生的惯性力相对于附着力也相当可观,达到附着力的三分之一左右。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验