Yin Yuejia, Chen Yajie, Yu Xinyan, Zhang Qiuyu, Ru Yaxin, Tian Guohui
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
J Colloid Interface Sci. 2023 Nov 15;650(Pt B):1339-1349. doi: 10.1016/j.jcis.2023.07.061. Epub 2023 Jul 10.
Hollow structure hybrids have gained considerable attention for their ability to reduce CO owing to their rich active sites, high gas adsorption ability, and excellent light utilization capacity. Herein, a template-engaged strategy was provided to fabricate copper sulphide@cerium dioxide (CuS@CeO) p-n heterojunction hollow cube photocatalysts using CuO cubes as a sacrificial template. The sequential steps of loading of CeO nanolayer, sulfidation, and etching reaction facilitate the formation of CuS@CeO p-n heterojunction hollow cubes. Compared with the single CuS, CeO, and their physical mixture, the CuS@CeO p-n heterojunction hollow cube photocatalyst expresses a higher performance toward photocatalytic CO reduction under solid-gas reaction conditions due to the faster separation of photogenerated charges. The further enhanced performance of CuS@CeO p-n heterojunction hollow cubes was achieved by decorating pt nanoparticles due to the fact that Pt nanoparticles had a high electron affinity and CO adsorption capacity, and the highest CO and CH yields of the optimized hybrid reached 195.8 μmol g h and 19.96 μmol g h, respectively. This work might provide a strategy for designing and synthesizing efficient hollow heterostructured photocatalysts for solar energy conversion and utilization.
中空结构杂化物因其丰富的活性位点、高气体吸附能力和出色的光利用能力而在减少一氧化碳方面备受关注。在此,提供了一种模板参与策略,以氧化铜立方体为牺牲模板制备硫化铜@二氧化铈(CuS@CeO)p-n异质结中空立方体光催化剂。二氧化铈纳米层的负载、硫化和蚀刻反应的连续步骤促进了CuS@CeO p-n异质结中空立方体的形成。与单一的硫化铜、二氧化铈及其物理混合物相比,CuS@CeO p-n异质结中空立方体光催化剂在固气反应条件下对光催化一氧化碳还原表现出更高的性能,这是由于光生电荷的更快分离。通过修饰铂纳米颗粒进一步提高了CuS@CeO p-n异质结中空立方体的性能,这是因为铂纳米颗粒具有高电子亲和力和一氧化碳吸附能力,优化后的杂化物的一氧化碳和甲烷产率最高分别达到195.8 μmol g h和19.96 μmol g h。这项工作可能为设计和合成用于太阳能转换和利用的高效中空异质结构光催化剂提供一种策略。