Suppr超能文献

使用 Cryptocaryon irritans 固定抗原的信号肽和 GPI 锚定序列在 Tetrahymena thermophila 细胞表面表达靶蛋白。

Target Protein Expression on Tetrahymena thermophila Cell Surface Using the Signal Peptide and GPI Anchor Sequences of the Immobilization Antigen of Cryptocaryon irritans.

机构信息

Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.

National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.

出版信息

Mol Biotechnol. 2024 Aug;66(8):1907-1918. doi: 10.1007/s12033-023-00824-w. Epub 2023 Jul 22.

Abstract

Cryptocaryoniasis, caused by Cryptocaryon irritans, is a significant threat to marine fish cultures in tropical and subtropical waters. However, controlling this disease remains a challenge. Fish infected with C. irritans acquires immunity; however, C. irritans is difficult to culture in large quantities, obstructing vaccine development using parasite cells. In this study, we established a method for expressing an arbitrary protein on the surface of Tetrahymena thermophila, a culturable ciliate, to develop a mimetic C. irritans. Fusing the signal peptide (SP) and glycosylphosphatidylinositol (GPI) anchor sequences of the immobilization antigen, a surface protein of C. irritans, to the fluorescent protein, monomeric Azami-green 1 (mAG1) of the stony coral Galaxea fascicularis, allowed protein expression on the surface and cilia of transgenic Tetrahymena cells. This technique may help develop transgenic Tetrahymena displaying parasite antigens on their cell surface, potentially contributing to the development of vaccines using "mimetic parasites".

摘要

海水小瓜虫病由小瓜虫属刺激隐核虫引起,对热带和亚热带水域的海水鱼类养殖构成严重威胁。然而,控制这种疾病仍然是一个挑战。感染小瓜虫的鱼类会获得免疫力;但是,小瓜虫属很难大量培养,这阻碍了使用寄生虫细胞开发疫苗。在这项研究中,我们建立了一种在可培养纤毛虫嗜热四膜虫表面表达任意蛋白的方法,以开发模拟小瓜虫属的方法。融合固定抗原(小瓜虫属表面蛋白)的信号肽(SP)和糖基磷脂酰肌醇(GPI)锚序列到石珊瑚华丽鹿角珊瑚的荧光蛋白单体 Azami-green 1(mAG1)上,允许蛋白在转基因嗜热四膜虫细胞的表面和纤毛上表达。这项技术可能有助于开发在细胞表面展示寄生虫抗原的转基因嗜热四膜虫,这可能有助于开发使用“模拟寄生虫”的疫苗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bd6/11282128/d075e074e265/12033_2023_824_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验