Suppr超能文献

利用报警停留时间过滤通用临床报警:一种机器学习方法。

Using alert dwell time to filter universal clinical alerts: A machine learning approach.

机构信息

Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Artificial Intelligence Research and Development Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; International Center for Health Information and Technology, College of Medical science and Technology, Taipei Medical University, Taipei 110, Taiwan.

Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; International Center for Health Information and Technology, College of Medical science and Technology, Taipei Medical University, Taipei 110, Taiwan; Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan.

出版信息

Comput Methods Programs Biomed. 2023 Oct;240:107696. doi: 10.1016/j.cmpb.2023.107696. Epub 2023 Jun 25.

Abstract

BACKGROUND

Alerts in computerized physician order entry (CPOE) systems can improve patient safety. However, alerts in rule-based systems cannot be customized based on individual patient or user characteristics. This limitation can lead to the presentation of irrelevant alerts and subsequent alert fatigue.

OBJECTIVE

We used machine learning approaches with alert dwell time to filter out irrelevant alerts for physicians based on contextual factors.

METHODS

We utilized five machine learning algorithms and a total of 1,120 features grouped into six categories: alert, demographic, environment, diagnosis, prescription, and laboratory results. The output of the models was the alert dwell time within a specified time window to determine the optimal range by the sensitivity analysis.

RESULTS

We used 813,026 records (19 categories) from the hospital's outpatient clinic data from 2020 to 2021. The sensitivity analysis showed that a time window with a range of 0.3-4.0 s had the best performance, with an area under the receiver operating characteristic (AUROC) curve of 0.73 and an area under the precision-recall curve (AUPRC) of 0.97. The model built with alert and demographic feature groups showed the best performance, with an AUROC of 0.73. The most significant individual feature groups were alert and demographic, with AUROCs of 0.66 and 0.62, respectively.

CONCLUSION

Our study found that alerts and user and patient demographic features are more crucial than clinical features when constructing universal context-aware alerts. Using alert dwell time in combination with a time window is an effective way to determine the trigger status of an alert. The findings of this study can provide useful insights for researchers working on specific and universal context-aware alerts.

摘要

背景

计算机化医嘱录入(CPOE)系统中的警报可以提高患者安全性。然而,基于规则的系统中的警报无法根据患者或用户的个人特征进行定制。这一限制可能导致无关警报的呈现和随后的警报疲劳。

目的

我们使用具有警报停留时间的机器学习方法,根据上下文因素为医生筛选出不相关的警报。

方法

我们利用了五种机器学习算法和总共 1120 个特征,这些特征分为六个类别:警报、人口统计学、环境、诊断、处方和实验室结果。模型的输出是在指定时间窗口内的警报停留时间,通过灵敏度分析来确定最佳范围。

结果

我们使用了 2020 年至 2021 年医院门诊数据的 813026 条记录(19 个类别)。灵敏度分析表明,时间窗口范围在 0.3-4.0 秒时表现最佳,其接收者操作特征(ROC)曲线下面积(AUROC)为 0.73,精度-召回率曲线(AUPRC)下面积为 0.97。基于警报和人口统计学特征组构建的模型表现最佳,AUROC 为 0.73。最重要的单个特征组是警报和人口统计学,AUROC 分别为 0.66 和 0.62。

结论

我们的研究发现,在构建通用上下文感知警报时,警报和用户及患者人口统计学特征比临床特征更为关键。使用警报停留时间结合时间窗口是确定警报触发状态的有效方法。这项研究的结果可为研究特定和通用上下文感知警报的研究人员提供有用的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验