Helmsley Electrophysiology Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
JACC Clin Electrophysiol. 2023 Aug;9(8 Pt 2):1437-1451. doi: 10.1016/j.jacep.2023.05.025. Epub 2023 Jul 19.
Premature ventricular complexes (PVCs) are prevalent and, although often benign, they may lead to PVC-induced cardiomyopathy. We created a deep-learning algorithm to predict left ventricular ejection fraction (LVEF) reduction in patients with PVCs from a 12-lead electrocardiogram (ECG).
This study aims to assess a deep-learning model to predict cardiomyopathy among patients with PVCs.
We used electronic medical records from 5 hospitals and identified ECGs from adults with documented PVCs. Internal training and testing were performed at one hospital. External validation was performed with the others. The primary outcome was first diagnosis of LVEF ≤40% within 6 months. The dataset included 383,514 ECGs, of which 14,241 remained for analysis. We analyzed area under the receiver operating curves and explainability plots for representative patients, algorithm prediction, PVC burden, and demographics in a multivariable Cox model to assess independent predictors for cardiomyopathy.
Among the 14,241-patient cohort (age 67.6 ± 14.8 years; female 43.8%; White 29.5%, Black 8.6%, Hispanic 6.5%, Asian 2.2%), 22.9% experienced reductions in LVEF to ≤40% within 6 months. The model predicted reductions in LVEF to ≤40% with area under the receiver operating curve of 0.79 (95% CI: 0.77-0.81). The gradient weighted class activation map explainability framework highlighted the sinus rhythm QRS complex-ST segment. In patients who underwent successful PVC ablation there was a post-ablation improvement in LVEF with resolution of cardiomyopathy in most (89%) patients.
Deep-learning on the 12-lead ECG alone can accurately predict new-onset cardiomyopathy in patients with PVCs independent of PVC burden. Model prediction performed well across sex and race, relying on the QRS complex/ST-segment in sinus rhythm, not PVC morphology.
室性早搏(PVC)很常见,虽然通常是良性的,但它们可能导致 PVC 引起的心肌病。我们创建了一个深度学习算法,以从 12 导联心电图(ECG)预测 PVC 患者的左心室射血分数(LVEF)降低。
本研究旨在评估深度学习模型在预测 PVC 患者心肌病中的作用。
我们使用来自 5 家医院的电子病历,并确定了有记录的 PVC 成人的 ECG。内部培训和测试在一家医院进行。外部验证由其他医院进行。主要结局是在 6 个月内首次诊断为 LVEF≤40%。该数据集包括 383514 份 ECG,其中 14241 份用于分析。我们分析了代表患者、算法预测、PVC 负荷和人口统计学的接收器工作曲线下面积和解释性图,以评估多变量 Cox 模型中心肌病的独立预测因素。
在 14241 例患者队列中(年龄 67.6±14.8 岁;女性 43.8%;白人 29.5%,黑人 8.6%,西班牙裔 6.5%,亚洲人 2.2%),22.9%的患者在 6 个月内 LVEF 降低至≤40%。该模型预测 LVEF 降低至≤40%的受试者工作曲线下面积为 0.79(95%CI:0.77-0.81)。梯度加权类激活图解释框架突出了窦性节律 QRS 复合体-ST 段。在接受成功 PVC 消融的患者中,LVEF 在消融后有所改善,大多数(89%)患者的心肌病得到缓解。
仅基于 12 导联 ECG 的深度学习可以准确预测 PVC 患者新发心肌病,而与 PVC 负荷无关。模型预测在性别和种族方面表现良好,依赖于窦性节律的 QRS 复合体/ST 段,而不是 PVC 形态。