Suppr超能文献

基于乳腺 X 线摄影的机器学习方法鉴别叶状肿瘤和纤维腺瘤:初步研究。

Differentiation Between Phyllodes Tumors and Fibroadenomas of Breast Using Mammography-based Machine Learning Methods: A Preliminary Study.

机构信息

Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.

Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.

出版信息

Clin Breast Cancer. 2023 Oct;23(7):729-736. doi: 10.1016/j.clbc.2023.07.002. Epub 2023 Jul 7.

Abstract

OBJECTIVE

To investigate the diagnostic performance of a mammography-based radiomics model for distinguishing phyllodes tumors (PTs) from fibroadenomas (FAs) of the breast.

MATERIALS AND METHODS

A total of 156 patients were retrospectively included (75 with PTs, 81 with FAs) and divided into training and validation groups at a ratio of 7:3. Radiomics features were extracted from craniocaudal and mediolateral oblique images. The least absolute shrinkage and selection operator (LASSO) algorithm and principal component analysis (PCA) were performed to select features. Three machine learning classifiers, including logistic regression (LR), K-nearest neighbor classifier (KNN) and support vector machine (SVM), were implemented in the radiomics model, imaging model and combined model. Receiver operating characteristic curves, area under the curve (AUC), sensitivity and specificity were computed.

RESULTS

Among 1084 features, the LASSO algorithm selected 17 features, and PCA further selected 6 features. Three machine learning classifiers yielded the same AUC of 0.935 in the validation group for the radiomics model. In the imaging model, KNN yielded the highest accuracy rate of 89.4% and AUC of 0.947 in the validation set. For the combined model, the SVM classifier reached the highest AUC of 0.918 with an accuracy rate of 86.2%, sensitivity of 83.9%, and specificity of 89.4% in the training group. In the validation group, LR yielded the highest AUC of 0.973. The combined model had a relatively higher AUC than the radiomics model or imaging model, especially in the validation group.

CONCLUSIONS

Mammography-based radiomics features demonstrate good diagnostic performance for discriminating PTs from FAs.

摘要

目的

研究基于乳腺钼靶的放射组学模型在鉴别乳腺叶状肿瘤(PTs)与纤维腺瘤(FAs)中的诊断性能。

材料与方法

回顾性纳入 156 例患者(PTs 75 例,FAs 81 例),按 7:3 的比例分为训练组和验证组。从头尾位和内外斜位图像中提取放射组学特征。采用最小绝对收缩和选择算子(LASSO)算法和主成分分析(PCA)选择特征。在放射组学模型、影像学模型和联合模型中分别实现逻辑回归(LR)、K-最近邻分类器(KNN)和支持向量机(SVM)三种机器学习分类器。计算受试者工作特征曲线、曲线下面积(AUC)、敏感度和特异度。

结果

在 1084 个特征中,LASSO 算法选择了 17 个特征,PCA 进一步选择了 6 个特征。在验证组中,三种机器学习分类器的放射组学模型 AUC 相同,均为 0.935。在影像学模型中,KNN 在验证组中达到了最高的准确率 89.4%和 AUC 0.947。在联合模型中,SVM 分类器在训练组中达到了最高的 AUC 0.918,准确率为 86.2%,敏感度为 83.9%,特异度为 89.4%。在验证组中,LR 达到了最高的 AUC 0.973。与放射组学模型或影像学模型相比,联合模型的 AUC 相对较高,尤其是在验证组。

结论

基于乳腺钼靶的放射组学特征对鉴别 PTs 与 FAs 具有良好的诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验