Xie Jijia, Li Xiyi, Guo Jian, Luo Lei, Delgado Juan J, Martsinovich Natalia, Tang Junwang
Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
Sinopec Beijing Research Institute of Chemical Industry, Sinopec Group, Beijing, 100013, China.
Nat Commun. 2023 Jul 22;14(1):4431. doi: 10.1038/s41467-023-40160-w.
Phenol is one of the most important fine chemical intermediates in the synthesis of plastics and drugs with a market size of ca. $30b and the commercial production is via a two-step selective oxidation of benzene, requiring high energy input (high temperature and high pressure) in the presence of a corrosive acidic medium, and causing serious environmental issues. Here we present a four-phase interface strategy with well-designed Pd@Cu nanoarchitecture decorated TiO as a catalyst in a suspension system. The optimised catalyst leads to a turnover number of 16,000-100,000 for phenol generation with respect to the active sites and an excellent selectivity of ca. 93%. Such unprecedented results are attributed to the efficient activation of benzene by the atomically Cu coated Pd nanoarchitecture, enhanced charge separation, and an oxidant-lean environment. The rational design of catalyst and reaction system provides a green pathway for the selective conversion of symmetric organic molecules.
苯酚是塑料和药物合成中最重要的精细化学中间体之一,市场规模约为300亿美元,其商业生产是通过苯的两步选择性氧化进行的,在腐蚀性酸性介质存在下需要高能量输入(高温和高压),并会引发严重的环境问题。在此,我们提出了一种四相界面策略,在悬浮体系中使用精心设计的Pd@Cu纳米结构修饰的TiO作为催化剂。优化后的催化剂相对于活性位点,苯酚生成的周转数为16,000 - 100,000,选择性约为93%,表现优异。这种前所未有的结果归因于原子级Cu包覆的Pd纳米结构对苯的有效活化、增强的电荷分离以及贫氧化剂环境。催化剂和反应体系的合理设计为对称有机分子的选择性转化提供了一条绿色途径。